Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2014

01.01.2014 | Research Paper

Epitaxial formation of core–shell heterostructured Bi2Te3@Sb2Te3 hexagonal nanoplates

verfasst von: Li-Xing Liang, Yuan Deng, Yao Wang, Hong-Li Gao

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The core–shell heterostructured Bi2Te3@Sb2Te3 hexagonal nanoplates with a thickness range of 22–26 nm were fabricated by a ligand auxiliary solution process. After complete ligand removal by a facile NH3-based procedure, the platelets are spark plasma-sintered to a good p-type nanostructured bulk material with crystal grain sizes preserved. Resultant crystal structures and microstructures were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution TEM, energy dispersed X-ray spectroscopy, selected area electron diffraction, and atomic force microscopy measurements. The influences of solvent ratios of H2O/ethylene glycol, molar concentration of source materials, and PVP on the formation of the core–shell structures were studied in detail. Based on the time-dependent experiment, a possible formation mechanism related to epitaxial attachment was presented for the growth of the core–shell heterostructured Bi2Te3@Sb2Te3 nanoplates. The thermoelectric Seebeck coefficient, S, is in the range of 133–171 μV K−1 and the electric conductivity for the Bi2Te3@Sb2Te3 is in the range of 48,400–79,200 S m−1. The final power factor is in the range of 0.97–2.04 mW m−1 K−2, which is close to those of physical method synthesized bulk pellets. Furthermore, this result is about several to tens of times higher than those of the recent reported works on chemically synthesized nanocrystalline pnictogen chalcogenide materials. These unique features of our core–shell nanoplates make them attractive for the manufacture of high-performance 3D-embedded matrixthermoelectric materials.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Dirmyer MR, Martin J, Nolas GS, Sen A, Badding JV (2009) Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 5(8):933–937CrossRef Dirmyer MR, Martin J, Nolas GS, Sen A, Badding JV (2009) Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 5(8):933–937CrossRef
Zurück zum Zitat Dou XC, Li GH, Lei HC (2008) Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. Nano Lett 8(5):1286–1290CrossRef Dou XC, Li GH, Lei HC (2008) Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. Nano Lett 8(5):1286–1290CrossRef
Zurück zum Zitat Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053CrossRef Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053CrossRef
Zurück zum Zitat Goldsmid HJ (1958) The electrical conductivity and thermoelectric power of bismuth telluride. Proc Phys Soc 71:633–646CrossRef Goldsmid HJ (1958) The electrical conductivity and thermoelectric power of bismuth telluride. Proc Phys Soc 71:633–646CrossRef
Zurück zum Zitat Hamdou B, Kimling J, Dorn A, Pippel E, Rostek R, Woias P, Nielsch K (2013) Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. Adv Mater 25(2):239–244CrossRef Hamdou B, Kimling J, Dorn A, Pippel E, Rostek R, Woias P, Nielsch K (2013) Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. Adv Mater 25(2):239–244CrossRef
Zurück zum Zitat Li L, Yang YW, Huang XH, Li GH, Ang R, Zhang LD (2006) Fabrication and electronic transport properties of Bi nanotube arrays. Appl Phys Lett 88(10):103119-1–103119-3 Li L, Yang YW, Huang XH, Li GH, Ang R, Zhang LD (2006) Fabrication and electronic transport properties of Bi nanotube arrays. Appl Phys Lett 88(10):103119-1–103119-3
Zurück zum Zitat Lin YM, Dresselhaus MS (2003) Thermoelectric properties of superlattice nanowires. Phys Rev B 68:075304-1–075304-14 Lin YM, Dresselhaus MS (2003) Thermoelectric properties of superlattice nanowires. Phys Rev B 68:075304-1–075304-14
Zurück zum Zitat Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479CrossRef Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479CrossRef
Zurück zum Zitat Tsuji M, Yamaguchi D, Matsunaga M, Ikedo K (2011) Epitaxial growth of Au@Ni core–shell nanocrystals prepared using a two-step reduction method. Cryst Growth Des 11(5):1995–2005CrossRef Tsuji M, Yamaguchi D, Matsunaga M, Ikedo K (2011) Epitaxial growth of Au@Ni core–shell nanocrystals prepared using a two-step reduction method. Cryst Growth Des 11(5):1995–2005CrossRef
Zurück zum Zitat Vining CB (2009) An inconvenient truth about thermoelectrics. Nat Mater 8:83–85CrossRef Vining CB (2009) An inconvenient truth about thermoelectrics. Nat Mater 8:83–85CrossRef
Zurück zum Zitat Wang W, Zhang GQ, Li XG (2008) Manipulating growth of thermoelectric Bi2Te3/Sb multilayered nanowire arrays. J Phys Chem C 112(39):15190–15194CrossRef Wang W, Zhang GQ, Li XG (2008) Manipulating growth of thermoelectric Bi2Te3/Sb multilayered nanowire arrays. J Phys Chem C 112(39):15190–15194CrossRef
Zurück zum Zitat Yang DC, Meng GW, Xu QL, Han FM, Kong MG, Zhang LD (2008) Electronic transport behavior of bismuth nanotubes with a predesigned wall thickness. J Phys Chem C 112(23):8614–8616CrossRef Yang DC, Meng GW, Xu QL, Han FM, Kong MG, Zhang LD (2008) Electronic transport behavior of bismuth nanotubes with a predesigned wall thickness. J Phys Chem C 112(23):8614–8616CrossRef
Zurück zum Zitat Yang J, Yip H-L, Jen AK-Y (2013) Rational design of advanced thermoelectric materials. Adv Energy Mater 3:549–565CrossRef Yang J, Yip H-L, Jen AK-Y (2013) Rational design of advanced thermoelectric materials. Adv Energy Mater 3:549–565CrossRef
Zurück zum Zitat Yao M, Chen W, Fan X, Liu C, Meng X, Guo L, Chen C (2011) Wet chemical synthesis and magnetic properties of core–shell nanocolumns of Ni(OH)2@Co(OH)2 and their oxides. Cryst Eng Comm 13:2593–2598CrossRef Yao M, Chen W, Fan X, Liu C, Meng X, Guo L, Chen C (2011) Wet chemical synthesis and magnetic properties of core–shell nanocolumns of Ni(OH)2@Co(OH)2 and their oxides. Cryst Eng Comm 13:2593–2598CrossRef
Zurück zum Zitat Yoo B, Xiao F, Bozhilov KN, Herman J, Ryan MA, Myung NV (2007) Electrodeposition of thermoelectric superlattice nanowires. Adv Mater 19:296–299CrossRef Yoo B, Xiao F, Bozhilov KN, Herman J, Ryan MA, Myung NV (2007) Electrodeposition of thermoelectric superlattice nanowires. Adv Mater 19:296–299CrossRef
Zurück zum Zitat Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5:5147–5162CrossRef Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5:5147–5162CrossRef
Zurück zum Zitat Zhang GQ, Wang W, Li XG (2008) Enhanced thermoelectric properties of core/shell heterostructure nanowire composites. Adv Mater 20(19):3654–3656CrossRef Zhang GQ, Wang W, Li XG (2008) Enhanced thermoelectric properties of core/shell heterostructure nanowire composites. Adv Mater 20(19):3654–3656CrossRef
Zurück zum Zitat Zhang G, Yu Q, Wang W, Li X (2010) Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies. Adv Mater 22(17):1959–1962CrossRef Zhang G, Yu Q, Wang W, Li X (2010) Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies. Adv Mater 22(17):1959–1962CrossRef
Zurück zum Zitat Zhao YX, Dyck JS, Hernandez BM, Burda C (2010) Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J Am Chem Soc 132(14):4982–4983CrossRef Zhao YX, Dyck JS, Hernandez BM, Burda C (2010) Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J Am Chem Soc 132(14):4982–4983CrossRef
Zurück zum Zitat Zhao Y, Dyck JS, Burda C (2011) Toward high-performance nanostructured thermoelectric materials: the progress of bottom–up solution chemistry approaches. J Mater Chem 21:17049–17058CrossRef Zhao Y, Dyck JS, Burda C (2011) Toward high-performance nanostructured thermoelectric materials: the progress of bottom–up solution chemistry approaches. J Mater Chem 21:17049–17058CrossRef
Metadaten
Titel
Epitaxial formation of core–shell heterostructured Bi2Te3@Sb2Te3 hexagonal nanoplates
verfasst von
Li-Xing Liang
Yuan Deng
Yao Wang
Hong-Li Gao
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-2138-8

Weitere Artikel der Ausgabe 1/2014

Journal of Nanoparticle Research 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.