Skip to main content

08.04.2024

Error-Aware Conversion from ANN to SNN via Post-training Parameter Calibration

verfasst von: Yuhang Li, Shikuang Deng, Xin Dong, Shi Gu

Erschienen in: International Journal of Computer Vision

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking Neural Network (SNN), originating from the neural behavior in biology, has been recognized as one of the next-generation neural networks. Conventionally, SNNs can be obtained by converting from pre-trained Artificial Neural Networks (ANNs) by replacing the non-linear activation with spiking neurons without changing the parameters. In this work, we argue that simply copying and pasting the weights of ANN to SNN inevitably results in activation mismatch, especially for ANNs that are trained with batch normalization (BN) layers. To tackle the activation mismatch issue, we first provide a theoretical analysis by decomposing local layer-wise conversion error, and then quantitatively measure how this error propagates throughout the layers using the second-order analysis. Motivated by the theoretical results, we propose a set of layer-wise parameter calibration algorithms, which adjusts the parameters to minimize the activation mismatch. To further remove the dependency on data, we propose a privacy-preserving conversion regime by distilling synthetic data from source ANN and using it to calibrate the SNN. Extensive experiments for the proposed algorithms are performed on modern architectures and large-scale tasks including ImageNet classification and MS COCO detection. We demonstrate that our method can handle the SNN conversion and effectively preserve high accuracy even in 32 time steps. For example, our calibration algorithms can increase up to 63% accuracy when converting MobileNet against baselines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam, N., Nakamura, Y., Datta, P., Nam, G. J., Taba, B., Beakes, M. P., Brezzo, B., Kuang, J. B., Manohar, R., Risk, W. P., Jackson, B. L., & Modha, D. S. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 34(10), 1537–1557.CrossRef Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam, N., Nakamura, Y., Datta, P., Nam, G. J., Taba, B., Beakes, M. P., Brezzo, B., Kuang, J. B., Manohar, R., Risk, W. P., Jackson, B. L., & Modha, D. S. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 34(10), 1537–1557.CrossRef
Zurück zum Zitat Barbi, M., Chillemi, S., Di Garbo, A., & Reale, L. (2003). Stochastic resonance in a sinusoidally forced LIF model with noisy threshold. Biosystems, 71(1–2), 23–28.CrossRef Barbi, M., Chillemi, S., Di Garbo, A., & Reale, L. (2003). Stochastic resonance in a sinusoidally forced LIF model with noisy threshold. Biosystems, 71(1–2), 23–28.CrossRef
Zurück zum Zitat Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432. Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:​1308.​3432.
Zurück zum Zitat Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–10472.CrossRef Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–10472.CrossRef
Zurück zum Zitat Botev, A., Ritter, H., & Barber, D. (2017). Practical gauss-newton optimisation for deep learning. In International conference on machine learning (pp. 557–565). PMLR. Botev, A., Ritter, H., & Barber, D. (2017). Practical gauss-newton optimisation for deep learning. In International conference on machine learning (pp. 557–565). PMLR.
Zurück zum Zitat Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., & Huang, T. (2021). Optimal ann-snn conversion for high-accuracy and ultra-low-latency spiking neural networks. In International conference on learning representations. Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., & Huang, T. (2021). Optimal ann-snn conversion for high-accuracy and ultra-low-latency spiking neural networks. In International conference on learning representations.
Zurück zum Zitat Bu, T., Ding, J., Yu, Z., & Huang, T. (2022). Optimized potential initialization for low-latency spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence (pp. 11–20). Bu, T., Ding, J., Yu, Z., & Huang, T. (2022). Optimized potential initialization for low-latency spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence (pp. 11–20).
Zurück zum Zitat Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B., Xu, C., Xu, C., & Tian, Q. (2019). Data-free learning of student networks. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3514–3522). Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B., Xu, C., Xu, C., & Tian, Q. (2019). Data-free learning of student networks. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3514–3522).
Zurück zum Zitat Chowdhury, S. S., Rathi, N., & Roy, K. (2021). One timestep is all you need: Training spiking neural networks with ultra low latency. arXiv preprint arXiv:2110.05929. Chowdhury, S. S., Rathi, N., & Roy, K. (2021). One timestep is all you need: Training spiking neural networks with ultra low latency. arXiv preprint arXiv:​2110.​05929.
Zurück zum Zitat Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo, M., Redaelli, A., Slesazeck, S., Mikolajick, T., Spiga, S., Menzel, S., Valov, I., Milano, G., Ricciardi, C., Liang, S.-J., Miao, F., Lanza, M., Quill, T. J., Keene, S. T., Salleo, A., & Pryds, N. (2022). 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2(2), 022501.CrossRef Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo, M., Redaelli, A., Slesazeck, S., Mikolajick, T., Spiga, S., Menzel, S., Valov, I., Milano, G., Ricciardi, C., Liang, S.-J., Miao, F., Lanza, M., Quill, T. J., Keene, S. T., Salleo, A., & Pryds, N. (2022). 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2(2), 022501.CrossRef
Zurück zum Zitat Cox, D. D., & Dean, T. (2014). Neural networks and neuroscience-inspired computer vision. Current Biology, 24(18), R921–R929.CrossRef Cox, D. D., & Dean, T. (2014). Neural networks and neuroscience-inspired computer vision. Current Biology, 24(18), R921–R929.CrossRef
Zurück zum Zitat Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 113–123). Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 113–123).
Zurück zum Zitat Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., & Wang, H. (2018). Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1), 82–99.CrossRef Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., & Wang, H. (2018). Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1), 82–99.CrossRef
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255). IEEE. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255). IEEE.
Zurück zum Zitat Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., Zhao, G., Li, P., & Xie, Y. (2020). Rethinking the performance comparison between SNNS and ANNS. Neural Networks, 121, 294–307.CrossRef Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., Zhao, G., Li, P., & Xie, Y. (2020). Rethinking the performance comparison between SNNS and ANNS. Neural Networks, 121, 294–307.CrossRef
Zurück zum Zitat DeVries, T., & Taylor, G. W. (2017). Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552. DeVries, T., & Taylor, G. W. (2017). Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:​1708.​04552.
Zurück zum Zitat Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., & Pfeiffer, M. (2015). Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015 International joint conference on neural networks (IJCNN) (pp. 1–8). IEEE. Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., & Pfeiffer, M. (2015). Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015 International joint conference on neural networks (IJCNN) (pp. 1–8). IEEE.
Zurück zum Zitat Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., & Neftci, E. (2016). Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In 2016 IEEE international conference on rebooting computing (ICRC) (pp. 1–8). IEEE. Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., & Neftci, E. (2016). Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In 2016 IEEE international conference on rebooting computing (ICRC) (pp. 1–8). IEEE.
Zurück zum Zitat Dong, X., Chen, S., & Pan, S. (2017a). Learning to prune deep neural networks via layer-wise optimal brain surgeon. Advances in Neural Information Processing Systems,30. Dong, X., Chen, S., & Pan, S. (2017a). Learning to prune deep neural networks via layer-wise optimal brain surgeon. Advances in Neural Information Processing Systems,30.
Zurück zum Zitat Dong, X., Chen, S., & Pan, S. (2017b). Learning to prune deep neural networks via layer-wise optimal brain surgeon. Advances in Neural Information Processing Systems. Dong, X., Chen, S., & Pan, S. (2017b). Learning to prune deep neural networks via layer-wise optimal brain surgeon. Advances in Neural Information Processing Systems.
Zurück zum Zitat Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2019). Hawq: Hessian aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 293–302). Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2019). Hawq: Hessian aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 293–302).
Zurück zum Zitat Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., & Tian, Y. (2021). Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2661–2671). Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., & Tian, Y. (2021). Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2661–2671).
Zurück zum Zitat Furber, S. B., Galluppi, F., Temple, S., et al. (2014). The spinnaker project. Proceedings of the IEEE, 102(5), 652–665.CrossRef Furber, S. B., Galluppi, F., Temple, S., et al. (2014). The spinnaker project. Proceedings of the IEEE, 102(5), 652–665.CrossRef
Zurück zum Zitat Gu, P., Xiao, R., Pan, G., & Tang, H. (2019). STCA: Spatio-temporal credit assignment with delayed feedback in deep spiking neural networks. In IJCAI (Vol. 15, pp. 1366–1372). Gu, P., Xiao, R., Pan, G., & Tang, H. (2019). STCA: Spatio-temporal credit assignment with delayed feedback in deep spiking neural networks. In IJCAI (Vol. 15, pp. 1366–1372).
Zurück zum Zitat Han, B., & Roy, K. (2020). Deep spiking neural network: Energy efficiency through time based coding. In European conference on computer vision. Han, B., & Roy, K. (2020). Deep spiking neural network: Energy efficiency through time based coding. In European conference on computer vision.
Zurück zum Zitat Han, B., Srinivasan, G., & Roy, K. (2020). Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13558–13567). Han, B., Srinivasan, G., & Roy, K. (2020). Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13558–13567).
Zurück zum Zitat Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network pruning: Optimal brain surgeon. Advances in Neural Information Processing Systems, 5, 164–171. Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network pruning: Optimal brain surgeon. Advances in Neural Information Processing Systems, 5, 164–171.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition.
Zurück zum Zitat He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., & Li, M. (2019). Bag of tricks for image classification with convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 558–567). He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., & Li, M. (2019). Bag of tricks for image classification with convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 558–567).
Zurück zum Zitat Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. Psychology Press.CrossRef Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. Psychology Press.CrossRef
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.CrossRef Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.CrossRef
Zurück zum Zitat Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861.
Zurück zum Zitat Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Martínez, J. F., Bataller-Mompeán, M., & Francés-Villora, J. V. (2015). Simplified spiking neural network architecture and stdp learning algorithm applied to image classification. EURASIP Journal on Image and Video Processing, 1, 1–11. Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Martínez, J. F., Bataller-Mompeán, M., & Francés-Villora, J. V. (2015). Simplified spiking neural network architecture and stdp learning algorithm applied to image classification. EURASIP Journal on Image and Video Processing, 1, 1–11.
Zurück zum Zitat Ikegawa, S. I., Saiin, R., Sawada, Y., & Natori, N. (2022). Rethinking the role of normalization and residual blocks for spiking neural networks. Sensors, 22(8), 2876.CrossRef Ikegawa, S. I., Saiin, R., Sawada, Y., & Natori, N. (2022). Rethinking the role of normalization and residual blocks for spiking neural networks. Sensors, 22(8), 2876.CrossRef
Zurück zum Zitat Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448–456). PMLR. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448–456). PMLR.
Zurück zum Zitat Iyer, L. R., & Chua, Y. (2020). Classifying neuromorphic datasets with tempotron and spike timing dependent plasticity. In 2020 international joint conference on neural networks (IJCNN) (pp. 1–8). IEEE. Iyer, L. R., & Chua, Y. (2020). Classifying neuromorphic datasets with tempotron and spike timing dependent plasticity. In 2020 international joint conference on neural networks (IJCNN) (pp. 1–8). IEEE.
Zurück zum Zitat Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.MathSciNetCrossRef Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.MathSciNetCrossRef
Zurück zum Zitat Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., & Masquelier, T. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks, 99, 56–67.CrossRef Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., & Masquelier, T. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks, 99, 56–67.CrossRef
Zurück zum Zitat Kim, S., Park, S., Na, B., & Yoon, S. (2020). Spiking-yolo: Spiking neural network for energy-efficient object detection. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 11270–11277). Kim, S., Park, S., Na, B., & Yoon, S. (2020). Spiking-yolo: Spiking neural network for energy-efficient object detection. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 11270–11277).
Zurück zum Zitat Kim, Y., & Panda, P. (2021). Revisiting batch normalization for training low-latency deep spiking neural networks from scratch. Frontiers in Neuroscience, 15(773), 954. Kim, Y., & Panda, P. (2021). Revisiting batch normalization for training low-latency deep spiking neural networks from scratch. Frontiers in Neuroscience, 15(773), 954.
Zurück zum Zitat Kim, Y., Li, Y., Park, H., Venkatesha, Y., & Panda, P. (2022). Neural architecture search for spiking neural networks. In European conference on computer vision (pp. 36–56). Cham: Springer Nature Switzerland. Kim, Y., Li, Y., Park, H., Venkatesha, Y., & Panda, P. (2022). Neural architecture search for spiking neural networks. In European conference on computer vision (pp. 36–56). Cham: Springer Nature Switzerland.
Zurück zum Zitat Lee, C., Panda, P., Srinivasan, G., & Roy, K. (2018). Training deep spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised fine-tuning. Frontiers in Neuroscience, 12, 373945.CrossRef Lee, C., Panda, P., Srinivasan, G., & Roy, K. (2018). Training deep spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised fine-tuning. Frontiers in Neuroscience, 12, 373945.CrossRef
Zurück zum Zitat Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., & Roy, K. (2020). Enabling spike-based backpropagation for training deep neural network architectures. Frontiers in Neuroscience, 14, 497482.CrossRef Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., & Roy, K. (2020). Enabling spike-based backpropagation for training deep neural network architectures. Frontiers in Neuroscience, 14, 497482.CrossRef
Zurück zum Zitat Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016). Training deep spiking neural networks using backpropagation. Frontiers in Neuroscience, 10, 508.CrossRef Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016). Training deep spiking neural networks using backpropagation. Frontiers in Neuroscience, 10, 508.CrossRef
Zurück zum Zitat Li S. L., & Li, J. P. (2019). Research on learning algorithm of spiking neural network. In 2019 16th international computer conference on wavelet active media technology and information processing (pp. 45–48). IEEE. Li S. L., & Li, J. P. (2019). Research on learning algorithm of spiking neural network. In 2019 16th international computer conference on wavelet active media technology and information processing (pp. 45–48). IEEE.
Zurück zum Zitat Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.CrossRef Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.CrossRef
Zurück zum Zitat Li, Y., & Zeng, Y. (2022). Efficient and accurate conversion of spiking neural network with burst spikes. arXiv preprint arXiv:2204.13271. Li, Y., & Zeng, Y. (2022). Efficient and accurate conversion of spiking neural network with burst spikes. arXiv preprint arXiv:​2204.​13271.
Zurück zum Zitat Li, Y., Deng, S., Dong, X., Gong, R., & Gu, S. (2021). A free lunch from ANN: Towards efficient, accurate spiking neural networks calibration. In International conference on machine learning (pp. 6316–6325). PMLR. Li, Y., Deng, S., Dong, X., Gong, R., & Gu, S. (2021). A free lunch from ANN: Towards efficient, accurate spiking neural networks calibration. In International conference on machine learning (pp. 6316–6325). PMLR.
Zurück zum Zitat Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., & Gu, S. (2021). Differentiable spike: Rethinking gradient-descent for training spiking neural networks. Advances in Neural Information Processing Systems, 34, 23426–23439. Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., & Gu, S. (2021). Differentiable spike: Rethinking gradient-descent for training spiking neural networks. Advances in Neural Information Processing Systems, 34, 23426–23439.
Zurück zum Zitat Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13 (pp. 740–755). Springer International Publishing. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13 (pp. 740–755). Springer International Publishing.
Zurück zum Zitat Lin, T. Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117–2125). Lin, T. Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117–2125).
Zurück zum Zitat Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980–2988). Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980–2988).
Zurück zum Zitat Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25–45.CrossRef Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25–45.CrossRef
Zurück zum Zitat Liu, Z., Wu, Z., Gan, C., Zhu, L., & Han, S. (2020). Datamix: Efficient privacy-preserving edge-cloud inference. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16 (pp. 578–595). Springer International Publishing. Liu, Z., Wu, Z., Gan, C., Zhu, L., & Han, S. (2020). Datamix: Efficient privacy-preserving edge-cloud inference. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16 (pp. 578–595). Springer International Publishing.
Zurück zum Zitat Lobov, S. A., Mikhaylov, A. N., Shamshin, M., Makarov, V. A., & Kazantsev, V. B. (2020). Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot. Frontiers in Neuroscience, 14, 491341.CrossRef Lobov, S. A., Mikhaylov, A. N., Shamshin, M., Makarov, V. A., & Kazantsev, V. B. (2020). Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot. Frontiers in Neuroscience, 14, 491341.CrossRef
Zurück zum Zitat Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., & Luo, Z. Q. (2022). Training high-performance low-latency spiking neural networks by differentiation on spike representation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12444–12453). Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., & Luo, Z. Q. (2022). Training high-performance low-latency spiking neural networks by differentiation on spike representation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12444–12453).
Zurück zum Zitat Miquel, J. R., Tolu, S., Scholler, F. E., & Galeazzi, R. (2021). Retinanet object detector based on analog-to-spiking neural network conversion. In 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI) (pp. 201–205). Miquel, J. R., Tolu, S., Scholler, F. E., & Galeazzi, R. (2021). Retinanet object detector based on analog-to-spiking neural network conversion. In 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI) (pp. 201–205).
Zurück zum Zitat Neftci, E. O., Mostafa, H., & Zenke, F. (2019). Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine, 36(6), 51–63.CrossRef Neftci, E. O., Mostafa, H., & Zenke, F. (2019). Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine, 36(6), 51–63.CrossRef
Zurück zum Zitat Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., Wang, Y., Wu, Y., Yang, Z., Ma, C., Li, G., Han, W., Li, H., Wu, H., Zhao, R., Xie, Y., & Shi, L. P. (2019). Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 572(7767), 106–111.CrossRef Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., Wang, Y., Wu, Y., Yang, Z., Ma, C., Li, G., Han, W., Li, H., Wu, H., Zhao, R., Xie, Y., & Shi, L. P. (2019). Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 572(7767), 106–111.CrossRef
Zurück zum Zitat Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollar, P. (2020). Designing network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10428–10436). Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollar, P. (2020). Designing network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10428–10436).
Zurück zum Zitat Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In European conference on computer vision (pp. 525–542). Cham: Springer International Publishing. Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In European conference on computer vision (pp. 525–542). Cham: Springer International Publishing.
Zurück zum Zitat Rathi, N., & Roy, K. (2021). Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and Learning Systems, 34(6), 3174–3182.CrossRef Rathi, N., & Roy, K. (2021). Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and Learning Systems, 34(6), 3174–3182.CrossRef
Zurück zum Zitat Rathi, N., Srinivasan, G., Panda, P., & Roy, K. (2019). Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In International conference on learning representations. Rathi, N., Srinivasan, G., Panda, P., & Roy, K. (2019). Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In International conference on learning representations.
Zurück zum Zitat Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28.
Zurück zum Zitat Roy, D., Chakraborty, I., & Roy, K. (2019). Scaling deep spiking neural networks with binary stochastic activations. In 2019 IEEE International Conference on Cognitive Computing (ICCC) (pp. 50–58). IEEE. Roy, D., Chakraborty, I., & Roy, K. (2019). Scaling deep spiking neural networks with binary stochastic activations. In 2019 IEEE International Conference on Cognitive Computing (ICCC) (pp. 50–58). IEEE.
Zurück zum Zitat Roy, K., Jaiswal, A., & Panda, P. (2019). Towards spike-based machine intelligence with neuromorphic computing. Nature, 575(7784), 607–617.CrossRef Roy, K., Jaiswal, A., & Panda, P. (2019). Towards spike-based machine intelligence with neuromorphic computing. Nature, 575(7784), 607–617.CrossRef
Zurück zum Zitat Rueckauer, B., Lungu, I. A., Hu, Y., & Pfeiffer, M. (2016). Theory and tools for the conversion of analog to spiking convolutional neural networks. arXiv: Statistics/Machine Learning (1612.04052). Rueckauer, B., Lungu, I. A., Hu, Y., & Pfeiffer, M. (2016). Theory and tools for the conversion of analog to spiking convolutional neural networks. arXiv:​ Statistics/​Machine Learning (1612.04052).
Zurück zum Zitat Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., & Liu, S. C. (2017). Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in Neuroscience, 11, 294078.CrossRef Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., & Liu, S. C. (2017). Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in Neuroscience, 11, 294078.CrossRef
Zurück zum Zitat Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. Advances in Neural Information Processing Systems, 31. Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. Advances in Neural Information Processing Systems, 31.
Zurück zum Zitat Sengupta, A., Ye, Y., Wang, R., Liu, C., & Roy, K. (2019). Going deeper in spiking neural networks: VGG and residual architectures. Frontiers in Neuroscience, 13, 425055.CrossRef Sengupta, A., Ye, Y., Wang, R., Liu, C., & Roy, K. (2019). Going deeper in spiking neural networks: VGG and residual architectures. Frontiers in Neuroscience, 13, 425055.CrossRef
Zurück zum Zitat Shrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer error reassignment in time. Advances in Neural Information Processing Systems, 31, 1412–1421. Shrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer error reassignment in time. Advances in Neural Information Processing Systems, 31, 1412–1421.
Zurück zum Zitat Silver, D., Huang, A., Maddison, C. J., Guez, Arthur, Sifre, Laurent, van den Driessche, George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneershelvam, Veda, Lanctot, Marc, Dieleman, Sander, Grewe, Dominik, Nham, John, Kalchbrenner, Nal, Sutskever, Ilya, Lillicrap, Timothy, Leach, Madeleine, Kavukcuoglu, Koray, Graepel, Thore, & Hassabis, Demis. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef Silver, D., Huang, A., Maddison, C. J., Guez, Arthur, Sifre, Laurent, van den Driessche, George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneershelvam, Veda, Lanctot, Marc, Dieleman, Sander, Grewe, Dominik, Nham, John, Kalchbrenner, Nal, Sutskever, Ilya, Lillicrap, Timothy, Leach, Madeleine, Kavukcuoglu, Koray, Graepel, Thore, & Hassabis, Demis. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556.
Zurück zum Zitat Suetake, K., Ikegawa, S. I., Saiin, R., & Sawada, Y. (2023). S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks. Neural Networks, 159, 208–219.CrossRef Suetake, K., Ikegawa, S. I., Saiin, R., & Sawada, Y. (2023). S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks. Neural Networks, 159, 208–219.CrossRef
Zurück zum Zitat Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329.CrossRef Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329.CrossRef
Zurück zum Zitat Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826). Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).
Zurück zum Zitat Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2820–2828). Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2820–2828).
Zurück zum Zitat Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019). Deep learning in spiking neural networks. Neural Networks, 111, 47–63.CrossRef Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019). Deep learning in spiking neural networks. Neural Networks, 111, 47–63.CrossRef
Zurück zum Zitat Theis, L., Korshunova, I., Tejani, A., & Huszar, F. (2018). Faster gaze prediction with dense networks and fisher pruning. arXiv preprint arXiv:1801.05787. Theis, L., Korshunova, I., Tejani, A., & Huszar, F. (2018). Faster gaze prediction with dense networks and fisher pruning. arXiv preprint arXiv:​1801.​05787.
Zurück zum Zitat Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Junhyuk, O., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., & Silver, D. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782), 350–354.CrossRef Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Junhyuk, O., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., & Silver, D. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782), 350–354.CrossRef
Zurück zum Zitat Wang, Y., Zhang, M., Chen, Y., & Qu, H. (2022). Signed neuron with memory: Towards simple, accurate and high-efficient ANN-SNN conversion. In International joint conference on artificial intelligence (pp. 2501–2508). Wang, Y., Zhang, M., Chen, Y., & Qu, H. (2022). Signed neuron with memory: Towards simple, accurate and high-efficient ANN-SNN conversion. In International joint conference on artificial intelligence (pp. 2501–2508).
Zurück zum Zitat Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., & Tan, K. C. (2021). A tandem learning rule for effective training and rapid inference of deep spiking neural networks. IEEE Transactions on Neural Networks and Learning Systems, 34(1), 446–460.CrossRef Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., & Tan, K. C. (2021). A tandem learning rule for effective training and rapid inference of deep spiking neural networks. IEEE Transactions on Neural Networks and Learning Systems, 34(1), 446–460.CrossRef
Zurück zum Zitat Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., & Tan, K. C. (2021). Progressive tandem learning for pattern recognition with deep spiking neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7824–7840.CrossRef Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., & Tan, K. C. (2021). Progressive tandem learning for pattern recognition with deep spiking neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7824–7840.CrossRef
Zurück zum Zitat Wu, Y., Deng, L., Li, G., & Shi, L. (2018). Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 331.CrossRef Wu, Y., Deng, L., Li, G., & Shi, L. (2018). Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 331.CrossRef
Zurück zum Zitat Wu, Y., Zhao, R., Zhu, J., Chen, F., Xu, M., Li, G., Song, S., Deng, L., Wang, G., Zheng, H., Pei, J., Zhang, Y., Zhao, M., & Shi, L. (2022). Brain-inspired global-local learning incorporated with neuromorphic computing. Nature Communications, 13(1), 1–14. Wu, Y., Zhao, R., Zhu, J., Chen, F., Xu, M., Li, G., Song, S., Deng, L., Wang, G., Zheng, H., Pei, J., Zhang, Y., Zhao, M., & Shi, L. (2022). Brain-inspired global-local learning incorporated with neuromorphic computing. Nature Communications, 13(1), 1–14.
Zurück zum Zitat Xiao, M., Meng, Q., Zhang, Z., Wang, Y., & Lin, Z. (2021). Training feedback spiking neural networks by implicit differentiation on the equilibrium state. Advances in Neural Information Processing Systems, 34, 14516–14528. Xiao, M., Meng, Q., Zhang, Z., Wang, Y., & Lin, Z. (2021). Training feedback spiking neural networks by implicit differentiation on the equilibrium state. Advances in Neural Information Processing Systems, 34, 14516–14528.
Zurück zum Zitat Xiao, M., Meng, Q., Zhang, Z., He, D., & Lin, Z. (2022). Online training through time for spiking neural networks. Advances in Neural Information Processing Systems, 35, 20717-20730. Xiao, M., Meng, Q., Zhang, Z., He, D., & Lin, Z. (2022). Online training through time for spiking neural networks. Advances in Neural Information Processing Systems, 35, 20717-20730.
Zurück zum Zitat Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya, A., Hoiem, D., Jha, N. K. & Kautz, J. (2020). Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8715–8724). Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya, A., Hoiem, D., Jha, N. K. & Kautz, J. (2020). Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8715–8724).
Zurück zum Zitat Zheng, H., Wu, Y., Deng, L., Hu, Y., & Li, G. (2021). Going deeper with directly-trained larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 12, pp. 11062–11070). Zheng, H., Wu, Y., Deng, L., Hu, Y., & Li, G. (2021). Going deeper with directly-trained larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 12, pp. 11062–11070).
Metadaten
Titel
Error-Aware Conversion from ANN to SNN via Post-training Parameter Calibration
verfasst von
Yuhang Li
Shikuang Deng
Xin Dong
Shi Gu
Publikationsdatum
08.04.2024
Verlag
Springer US
Erschienen in
International Journal of Computer Vision
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-024-02046-2

Premium Partner