Skip to main content
Erschienen in: Mitigation and Adaptation Strategies for Global Change 1/2022

01.01.2022 | Original article

EU’s bioethanol potential from wheat straw and maize stover and the environmental footprint of residue-based bioethanol

verfasst von: Bunyod Holmatov, Arjen Y. Hoekstra, Maarten S. Krol

Erschienen in: Mitigation and Adaptation Strategies for Global Change | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To reduce greenhouse gas (GHG) emissions, the European Union (EU) has targets for utilizing energy from renewable sources. By 2030, a minimum of 3.5% of energy in the EU’s transport sector should come from renewable biological sources, such as crop residues. This paper analyzed EU’s “advanced bioethanol” potential from wheat straw and maize stover and evaluated its environmental (land, water, and carbon) footprint. We differentiated between gross and net bioethanol output, the latter by subtracting the energy inputs in production. Results suggest that the annual amount of the sustainably harvestable wheat straw and maize stover is 81.9 Megatonnes (Mt) at field moisture weight (65.3 Mt as dry weight), yielding 470 PJ as gross (404 PJ as net) advanced bioethanol output. Calculated net advanced bioethanol can replace 2.95% of EU transport sector’s energy consumption. EU’s advanced bioethanol has a land footprint of 0.28 m2 MJ−1 for wheat straw and 0.18 m2 MJ−1 for maize stover. The average water footprint of advanced bioethanol is 173 L MJ−1 for wheat straw and 113 L MJ−1 for maize stover. The average carbon footprint per unit of advanced bioethanol is 19.4 and 19.6 g CO2eq MJ−1 for wheat straw and maize stover, respectively. Using advanced bioethanol can lead to emission savings, but EU’s advanced bioethanol production potential is insufficient to achieve EU’s target of a minimum share of 3.5% of advanced biofuels in the transport sector by 2030, and the associated water and land footprints are not smaller than footprints of conventional bioethanol.
Fußnoten
1
Converting btu to MJ, gallons to liters and liters of ethanol to kg of ethanol: 76,330 btu/gallon × 0.00105506 MJ/btu × (1/3.7854 L/gallon) × (1/0.789 L/kg). Conversion factor for btu to MJ is obtained from IEA, OECD (2010) Energy Statistics Manual. https://​www.​iea.​org/​training/​toolsandresource​s/​energystatistics​manual. June 26, 2019. Density of ethanol is obtained from Haynes, W.M. (2014) CRC handbook of chemistry and physics. CRC press.
 
Literatur
Zurück zum Zitat Badger PC (2002) Ethanol from cellulose: a general review. ASHS Press, Alexandria, pp 17–21 Badger PC (2002) Ethanol from cellulose: a general review. ASHS Press, Alexandria, pp 17–21
Zurück zum Zitat Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared By Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared By Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK
Zurück zum Zitat EEA (2006) How much bioenergy can Europe produce without harming the environment? European Environment Agency, Copenhagen EEA (2006) How much bioenergy can Europe produce without harming the environment? European Environment Agency, Copenhagen
Zurück zum Zitat Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. https://www.nrel.gov/docs/fy11osti/47764.pdf. February 1, 2020 Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. https://​www.​nrel.​gov/​docs/​fy11osti/​47764.​pdf. February 1, 2020
Zurück zum Zitat Jia L, Sun Z, Ge X, Xin D, Zhang J (2013) Comparison of the delignifiability and hydrolysability of wheat straw and corn stover in aqueous ammonia pretreatment. BioResources 8:4505–4517CrossRef Jia L, Sun Z, Ge X, Xin D, Zhang J (2013) Comparison of the delignifiability and hydrolysability of wheat straw and corn stover in aqueous ammonia pretreatment. BioResources 8:4505–4517CrossRef
Zurück zum Zitat Mekonnen MM, Gerbens-Leenes P, Hoekstra AY (2015) The consumptive water footprint of electricity and heat: a global assessment. Environ Sci: Water Res Technol 1:285–297 Mekonnen MM, Gerbens-Leenes P, Hoekstra AY (2015) The consumptive water footprint of electricity and heat: a global assessment. Environ Sci: Water Res Technol 1:285–297
Zurück zum Zitat Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of crops and derived crops products. Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of crops and derived crops products.
Zurück zum Zitat Olofsson J, Barta Z, Börjesson P, Wallberg O (2015) Life cycle assessment and techno-economical analysis of on-site enzyme production in 2nd generation bioethanol. The Swedish Knowledge Center For Renewable Transportation Fuels, Göteborg Olofsson J, Barta Z, Börjesson P, Wallberg O (2015) Life cycle assessment and techno-economical analysis of on-site enzyme production in 2nd generation bioethanol. The Swedish Knowledge Center For Renewable Transportation Fuels, Göteborg
Zurück zum Zitat Vanham D, Leip A, Galli A, Kastner T, Bruckner M, Uwizeye A, van Dijk K, Ercin E, Dalin C, Brandão M, Bastianoni S, Fang K, Leach A, Chapagain A, Van der Velde M, Sala S, Pant R, Mancini L, Monforti-Ferrario F, Carmona-Garcia G, Marques A, Weiss F, Hoekstra AY (2019a) Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci Total Environ 693:133642. https://doi.org/10.1016/j.scitotenv.2019.133642CrossRef Vanham D, Leip A, Galli A, Kastner T, Bruckner M, Uwizeye A, van Dijk K, Ercin E, Dalin C, Brandão M, Bastianoni S, Fang K, Leach A, Chapagain A, Van der Velde M, Sala S, Pant R, Mancini L, Monforti-Ferrario F, Carmona-Garcia G, Marques A, Weiss F, Hoekstra AY (2019a) Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci Total Environ 693:133642. https://​doi.​org/​10.​1016/​j.​scitotenv.​2019.​133642CrossRef
Zurück zum Zitat Wilhelm W, Johnson JM, Hatfield J, Voorhees W, Linden D (2004) Crop and soil productivity response to corn residue removal. Agron J 96:1–17 Wilhelm W, Johnson JM, Hatfield J, Voorhees W, Linden D (2004) Crop and soil productivity response to corn residue removal. Agron J 96:1–17
Metadaten
Titel
EU’s bioethanol potential from wheat straw and maize stover and the environmental footprint of residue-based bioethanol
verfasst von
Bunyod Holmatov
Arjen Y. Hoekstra
Maarten S. Krol
Publikationsdatum
01.01.2022
Verlag
Springer Netherlands
Erschienen in
Mitigation and Adaptation Strategies for Global Change / Ausgabe 1/2022
Print ISSN: 1381-2386
Elektronische ISSN: 1573-1596
DOI
https://doi.org/10.1007/s11027-021-09984-z

Weitere Artikel der Ausgabe 1/2022

Mitigation and Adaptation Strategies for Global Change 1/2022 Zur Ausgabe