Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 7/2022

09.06.2020 | Original Article

Evaluation of bio-crude oil through hydrothermal liquefaction of microalgae-bacteria consortium grown in open pond using wastewater

verfasst von: Bidhu Bhusan Makut, Gargi Goswami, Debasish Das

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study demonstrates a promising approach for production of bio-crude oil via hydrothermal liquefaction of microbial biomass grown in large-scale open raceway pond. Three key attributes to achieve process feasibility are co-cultivation of microalgae and bacteria resulting in high biomass titre, utilization of paper industry wastewater as cheap source of nutrients and water, and one-step direct conversion of biomass into bio-crude oil. High biomass titre of 4 g L−1 with 90% of COD removal efficiency was achieved, depicting robust performance of the microalgae-bacteria consortium in industrial wastewater and under fluctuating environmental condition. Statistical optimization resulted in highest bio-crude oil yield of 21.7 (%, w/w) under optimal temperature, biomass loading and reaction time of 299.7 °C, 16.1 (%, w/v) and 65 min, respectively. Bio-crude oil with energy recovery of 43% and heating value of 33.1 MJ kg−1 reflects 81.7% and 73.4% heating value of biodiesel and diesel, respectively. While high percentage of hydrocarbon content in bio-crude oil indicates good oil quality, the presence of significant esters fraction might offer resemblance to biodiesel. Lower H/C ratio and higher O/C ratio in comparison to diesel indicate requirement of upgradation of bio-crude oil before it can be realized at commercial scale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chang HN, Kim NJ, Kang J, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15:1–10CrossRef Chang HN, Kim NJ, Kang J, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15:1–10CrossRef
2.
Zurück zum Zitat Zhou W, Hu B, Li Y, Min M, Mohr M, Du Z, Ruan R (2012) Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Appl Biochem Biotechnol 168:348–363CrossRef Zhou W, Hu B, Li Y, Min M, Mohr M, Du Z, Ruan R (2012) Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Appl Biochem Biotechnol 168:348–363CrossRef
3.
Zurück zum Zitat Mehrabadi A, Craggs R, Farid MM (2015) Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour Technol 184:202–214CrossRef Mehrabadi A, Craggs R, Farid MM (2015) Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour Technol 184:202–214CrossRef
4.
Zurück zum Zitat Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol 7 Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol 7
5.
Zurück zum Zitat Makut BB, Das D, Goswami G (2019) Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: a sustainable approach. Algal Res 37:228–239CrossRef Makut BB, Das D, Goswami G (2019) Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: a sustainable approach. Algal Res 37:228–239CrossRef
6.
Zurück zum Zitat Mujtaba G, Lee K (2016) Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria. Appl Chem Eng 27:1–9CrossRef Mujtaba G, Lee K (2016) Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria. Appl Chem Eng 27:1–9CrossRef
7.
Zurück zum Zitat Choi KJ, Han TH, Yoo G, Cho MH, Hwang SJ (2018) Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J Civ Eng 22:3215–3221CrossRef Choi KJ, Han TH, Yoo G, Cho MH, Hwang SJ (2018) Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J Civ Eng 22:3215–3221CrossRef
8.
Zurück zum Zitat Gonzalez LE, Bashan Y (2000) Increased growth of the microalga chlorella vulgaris when co-immobilized and co-cultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66:1527–1531CrossRef Gonzalez LE, Bashan Y (2000) Increased growth of the microalga chlorella vulgaris when co-immobilized and co-cultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66:1527–1531CrossRef
9.
Zurück zum Zitat Dao GH, Wu GX, Wang XX, Zhang TY, Zhan XM, Hu HY (2018) Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Res 33:345–351CrossRef Dao GH, Wu GX, Wang XX, Zhang TY, Zhan XM, Hu HY (2018) Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Res 33:345–351CrossRef
10.
Zurück zum Zitat Mouget JL, Dakhama A, Lavoie MC, de la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18:35–43CrossRef Mouget JL, Dakhama A, Lavoie MC, de la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18:35–43CrossRef
11.
Zurück zum Zitat De-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum sp. in promoting growth of chlorella vulgaris 1. J Phycol 44:938–947CrossRef De-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum sp. in promoting growth of chlorella vulgaris 1. J Phycol 44:938–947CrossRef
12.
Zurück zum Zitat Du J, Zhao G, Wang F, Zhao D, Chen X, Zhang S, Tian X (2013) Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China). Aquat Ecol 47:303–313CrossRef Du J, Zhao G, Wang F, Zhao D, Chen X, Zhang S, Tian X (2013) Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China). Aquat Ecol 47:303–313CrossRef
13.
Zurück zum Zitat Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 14:100CrossRef Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 14:100CrossRef
14.
Zurück zum Zitat Praveen P, Loh KC (2015) Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl Microbiol Biotechnol 99:10345–10354CrossRef Praveen P, Loh KC (2015) Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl Microbiol Biotechnol 99:10345–10354CrossRef
15.
Zurück zum Zitat Guo Y, Yeh T, Song W, Xu D, Wang S (2015) A review of bio-oil production from hydrothermal liquefaction of algae. Renew Sust Energ Rev 48:776–790CrossRef Guo Y, Yeh T, Song W, Xu D, Wang S (2015) A review of bio-oil production from hydrothermal liquefaction of algae. Renew Sust Energ Rev 48:776–790CrossRef
16.
Zurück zum Zitat Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392CrossRef Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392CrossRef
17.
Zurück zum Zitat Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187CrossRef Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187CrossRef
18.
Zurück zum Zitat Xue Y, Chen H, Zhao W, Yang C, Ma P, Han S (2016) A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. Int J Energy Res 40:865–877CrossRef Xue Y, Chen H, Zhao W, Yang C, Ma P, Han S (2016) A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. Int J Energy Res 40:865–877CrossRef
19.
Zurück zum Zitat Chen WT, Zhang Y, Zhang J, Yu G, Schideman LC, Zhang P, Minarick M (2014) Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresour Technol 152:130–139CrossRef Chen WT, Zhang Y, Zhang J, Yu G, Schideman LC, Zhang P, Minarick M (2014) Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresour Technol 152:130–139CrossRef
20.
Zurück zum Zitat Arun J, Varshini P, Prithvinath PK, Priyadarshini V, Gopinath KP (2018) Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: bio-char and post HTL wastewater utilization studies. Bioresour Technol 261:182–187CrossRef Arun J, Varshini P, Prithvinath PK, Priyadarshini V, Gopinath KP (2018) Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: bio-char and post HTL wastewater utilization studies. Bioresour Technol 261:182–187CrossRef
21.
Zurück zum Zitat Wei X, Jie D (2018) Optimization to hydrothermal liquefaction of low lipid content microalgae Spirulina sp. using response surface methodology. J Chem 2018 Wei X, Jie D (2018) Optimization to hydrothermal liquefaction of low lipid content microalgae Spirulina sp. using response surface methodology. J Chem 2018
22.
Zurück zum Zitat Cheng F, Mallick K, Gedara SMH, Jarvis JM, Schaub T, Jena U, Brewer CE (2019) Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater. Bioresour Technol 292:121884CrossRef Cheng F, Mallick K, Gedara SMH, Jarvis JM, Schaub T, Jena U, Brewer CE (2019) Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater. Bioresour Technol 292:121884CrossRef
23.
Zurück zum Zitat Goswami G, Makut BB, Das D (2019) Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment. Sci Rep 9:1–12CrossRef Goswami G, Makut BB, Das D (2019) Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment. Sci Rep 9:1–12CrossRef
24.
Zurück zum Zitat Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80CrossRef Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80CrossRef
25.
Zurück zum Zitat APHA (2017) Standard methods for the examination of water and wastewater, 23rd edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC, USA APHA (2017) Standard methods for the examination of water and wastewater, 23rd edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC, USA
26.
Zurück zum Zitat Parsons TR (2013) A manual of chemical & biological methods for seawater analysis. Elsevier Parsons TR (2013) A manual of chemical & biological methods for seawater analysis. Elsevier
27.
Zurück zum Zitat Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Res 10:1–14 Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Res 10:1–14
28.
Zurück zum Zitat Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26CrossRef Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26CrossRef
29.
Zurück zum Zitat Kim BH, Kang Z, Ramanan R, Choi JE, Cho DH, Oh HM, Kim HS (2014) Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J Microbiol Biotechnol 24:1123–1132CrossRef Kim BH, Kang Z, Ramanan R, Choi JE, Cho DH, Oh HM, Kim HS (2014) Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J Microbiol Biotechnol 24:1123–1132CrossRef
30.
Zurück zum Zitat Boëns B, Pilon G, Bourdeau N, Adjallé K, Barnabé S (2016) Hydrothermal liquefaction of a wastewater native Chlorella sp. bacteria consortium: biocrude production and characterization. Biofuels 7:611–619CrossRef Boëns B, Pilon G, Bourdeau N, Adjallé K, Barnabé S (2016) Hydrothermal liquefaction of a wastewater native Chlorella sp. bacteria consortium: biocrude production and characterization. Biofuels 7:611–619CrossRef
31.
Zurück zum Zitat Cheng F, Jarvis JM, Yu J, Jena U, Nirmalakhandan N, Schaub TM, Brewer CE (2019) Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Bioresour Technol 294:122184CrossRef Cheng F, Jarvis JM, Yu J, Jena U, Nirmalakhandan N, Schaub TM, Brewer CE (2019) Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Bioresour Technol 294:122184CrossRef
32.
Zurück zum Zitat Xu Y, Yu H, Hu X, Wei X, Cui Z (2014) Bio-oil production from algae via thermochemical catalytic liquefaction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36:38–44CrossRef Xu Y, Yu H, Hu X, Wei X, Cui Z (2014) Bio-oil production from algae via thermochemical catalytic liquefaction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36:38–44CrossRef
33.
Zurück zum Zitat Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35:5406–5411CrossRef Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35:5406–5411CrossRef
34.
Zurück zum Zitat Ramirez J, Brown R, Rainey T (2015) A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies 8:6765–6794CrossRef Ramirez J, Brown R, Rainey T (2015) A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies 8:6765–6794CrossRef
35.
Zurück zum Zitat Koley S, Khadase MS, Mathimani T, Raheman H, Mallick N (2018) Catalytic and non- catalytic hydrothermal processing of Scenedesmus obliquus biomass for bio-crude production–a sustainable energy perspective. Energy Convers Manag 163:111–121CrossRef Koley S, Khadase MS, Mathimani T, Raheman H, Mallick N (2018) Catalytic and non- catalytic hydrothermal processing of Scenedesmus obliquus biomass for bio-crude production–a sustainable energy perspective. Energy Convers Manag 163:111–121CrossRef
36.
Zurück zum Zitat Panahi HKS, Tabatabaei M, Aghbashlo M, Dehhaghi M, Rehan M, Nizami AS (2019) Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour Technol 7:100216 Panahi HKS, Tabatabaei M, Aghbashlo M, Dehhaghi M, Rehan M, Nizami AS (2019) Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour Technol 7:100216
37.
Zurück zum Zitat Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225CrossRef Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225CrossRef
38.
Zurück zum Zitat Chumpoo J, Prasassarakich P (2010) Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol. Energy Fuel 24:2071–2077CrossRef Chumpoo J, Prasassarakich P (2010) Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol. Energy Fuel 24:2071–2077CrossRef
39.
Zurück zum Zitat Karagöz S, Bhaskar T, Muto A, Sakata Y (2005) Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84:875–884CrossRef Karagöz S, Bhaskar T, Muto A, Sakata Y (2005) Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84:875–884CrossRef
40.
Zurück zum Zitat Kosinkova J, Ramirez JA, Nguyen J, Ristovski Z, Brown R, Lin CS, Rainey TJ (2015) Hydrothermal liquefaction of bagasse using ethanol and black liquor as solvents. Biofuels Bioprod Biorefin 9:630–638CrossRef Kosinkova J, Ramirez JA, Nguyen J, Ristovski Z, Brown R, Lin CS, Rainey TJ (2015) Hydrothermal liquefaction of bagasse using ethanol and black liquor as solvents. Biofuels Bioprod Biorefin 9:630–638CrossRef
41.
Zurück zum Zitat Li H, Yuan X, Zeng G, Huang D, Huang H, Tong J, You Q, Zhang J, Zhou M (2010) The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol. Bioresour Technol 101:2860–2866CrossRef Li H, Yuan X, Zeng G, Huang D, Huang H, Tong J, You Q, Zhang J, Zhou M (2010) The formation of bio-oil from sludge by deoxy-liquefaction in supercritical ethanol. Bioresour Technol 101:2860–2866CrossRef
42.
Zurück zum Zitat Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuel 25:5472–5482CrossRef Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuel 25:5472–5482CrossRef
43.
Zurück zum Zitat Yuan X, Wang J, Zeng G, Huang H, Pei X, Li H, Cong M (2011) Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents. Energy 36:6406–6412CrossRef Yuan X, Wang J, Zeng G, Huang H, Pei X, Li H, Cong M (2011) Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents. Energy 36:6406–6412CrossRef
44.
Zurück zum Zitat Boelhouwer JWM, Nederbragt GW, Verberg G (1951) Viscosity data of organic liquids. J Appl Sci Res 2:249CrossRef Boelhouwer JWM, Nederbragt GW, Verberg G (1951) Viscosity data of organic liquids. J Appl Sci Res 2:249CrossRef
45.
Zurück zum Zitat Lee SW, Tanaka D, Kusaka J, Daisho Y (2002) Effects of diesel fuel characteristics on spray and combustion in a diesel engine. JSAE Rev 23:407–414CrossRef Lee SW, Tanaka D, Kusaka J, Daisho Y (2002) Effects of diesel fuel characteristics on spray and combustion in a diesel engine. JSAE Rev 23:407–414CrossRef
46.
Zurück zum Zitat Alptekin E, Canakci M (2008) Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew Energy 33:2623–2630CrossRef Alptekin E, Canakci M (2008) Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew Energy 33:2623–2630CrossRef
47.
Zurück zum Zitat Ng JH, Ng HK, Gan S (2012) Development of emissions predictor equations for a light-duty diesel engine using biodiesel fuel properties. Fuel 95:544–552CrossRef Ng JH, Ng HK, Gan S (2012) Development of emissions predictor equations for a light-duty diesel engine using biodiesel fuel properties. Fuel 95:544–552CrossRef
48.
Zurück zum Zitat Jahirul MI, Brown RJ, Senadeera W, O'Hara IM, Ristovski ZD (2013) The use of artificial neural networks for identifying sustainable biodiesel feedstocks. Energies 6:3764–3806CrossRef Jahirul MI, Brown RJ, Senadeera W, O'Hara IM, Ristovski ZD (2013) The use of artificial neural networks for identifying sustainable biodiesel feedstocks. Energies 6:3764–3806CrossRef
49.
Zurück zum Zitat Zou S, Wu Y, Yang M, Li C, Tong J (2009) Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils. Energy Fuel 23:3753–3758CrossRef Zou S, Wu Y, Yang M, Li C, Tong J (2009) Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils. Energy Fuel 23:3753–3758CrossRef
50.
Zurück zum Zitat Huang Z, Wufuer A, Wang Y, Dai L (2018) Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content. Process Biochem 69:136–143CrossRef Huang Z, Wufuer A, Wang Y, Dai L (2018) Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content. Process Biochem 69:136–143CrossRef
51.
Zurück zum Zitat Xu D, Guo S, Liu L, Wu Z, Wang Y, Lin G (2019) Water-soluble and-insoluble biocrude production from hydrothermal liquefaction of microalgae with catalyst. Energy Procedia 158:97–102CrossRef Xu D, Guo S, Liu L, Wu Z, Wang Y, Lin G (2019) Water-soluble and-insoluble biocrude production from hydrothermal liquefaction of microalgae with catalyst. Energy Procedia 158:97–102CrossRef
Metadaten
Titel
Evaluation of bio-crude oil through hydrothermal liquefaction of microalgae-bacteria consortium grown in open pond using wastewater
verfasst von
Bidhu Bhusan Makut
Gargi Goswami
Debasish Das
Publikationsdatum
09.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 7/2022
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00795-x

Weitere Artikel der Ausgabe 7/2022

Biomass Conversion and Biorefinery 7/2022 Zur Ausgabe