Skip to main content
Erschienen in: Journal of Materials Science 9/2019

06.02.2019 | Materials for life sciences

Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds

verfasst von: Thaís Larissa do Amaral Montanheiro, Larissa Stieven Montagna, Viorica Patrulea, Olivier Jordan, Gerrit Borchard, Gabriela Matheus Monteiro Lobato, Luiz Henrique Catalani, Ana Paula Lemes

Erschienen in: Journal of Materials Science | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocomposite scaffolds of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 1, 2 and 3% (wt) of cellulose nanocrystals (CNC) were produced by thermally induced phase separation. CNC presented an average length of 91 ± 26 nm and average diameter of 7 ± 1 nm, determined by atomic force microscopy (AFM). Field emission gun scanning electron microscopy (FEG-SEM) and X-ray microtomography showed porous morphology with interconnected pores, porosity between 41 and 77% and micron-sized CNC dispersion along the samples. Pore distribution after introducing CNC was less regular with an average reduction of 37% in the porosity. The compression modulus was improved about 28% for PHBV/1% CNC, 25% for PHBV/2% CNC and 63% for PHBV/3% CNC. Mouse fibroblasts attached and proliferated better on PHBV/CNC scaffolds surface than on neat PHBV or tissue culture plate controls. After 10 days of cell culture, PHBV/2% CNC sample enhanced cell proliferation with 42%, compared to neat PHBV. Therefore, the addition of CNC can improve both compressive modulus and cell proliferation, making the composite scaffold a potential candidate for tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95CrossRef O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95CrossRef
2.
Zurück zum Zitat Sankar D, Chennazhi KP, Nair SV, Jayakumar R (2012) Fabrication of chitin/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohydr Polym 90:725–729CrossRef Sankar D, Chennazhi KP, Nair SV, Jayakumar R (2012) Fabrication of chitin/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohydr Polym 90:725–729CrossRef
4.
Zurück zum Zitat Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632CrossRef Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632CrossRef
5.
Zurück zum Zitat Cao Z, Dou C, Dong S (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014:1–8CrossRef Cao Z, Dou C, Dong S (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014:1–8CrossRef
6.
Zurück zum Zitat Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578CrossRef Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578CrossRef
7.
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
8.
Zurück zum Zitat Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer (Guildf) 51:2652–2660CrossRef Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer (Guildf) 51:2652–2660CrossRef
9.
Zurück zum Zitat Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938CrossRef Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938CrossRef
10.
Zurück zum Zitat Yu H-Y, Qin Z-Y (2014) Surface grafting of cellulose nanocrystals with poly(3-hydroxybutirate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478CrossRef Yu H-Y, Qin Z-Y (2014) Surface grafting of cellulose nanocrystals with poly(3-hydroxybutirate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478CrossRef
11.
Zurück zum Zitat Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558CrossRef Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558CrossRef
12.
Zurück zum Zitat Ten E, Jiang L, Wolcott MP (2013) Preparation and properties of aligned poly (3-hydroxybutyrate- co -3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 92:206–213CrossRef Ten E, Jiang L, Wolcott MP (2013) Preparation and properties of aligned poly (3-hydroxybutyrate- co -3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 92:206–213CrossRef
13.
Zurück zum Zitat Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42:2629–2645CrossRef Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42:2629–2645CrossRef
14.
Zurück zum Zitat Benini KCCC, Cioffi MOH, Voorwald HJC (2017) PHBV/cellulose nanocrystals composites obtained by solution casting and electrospinning process. Revista Matér 22:1–9 Benini KCCC, Cioffi MOH, Voorwald HJC (2017) PHBV/cellulose nanocrystals composites obtained by solution casting and electrospinning process. Revista Matér 22:1–9
15.
Zurück zum Zitat Yu H, Qin Z, Zhou Z (2011) Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog Nat Sci Mater Int 21:478–484CrossRef Yu H, Qin Z, Zhou Z (2011) Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog Nat Sci Mater Int 21:478–484CrossRef
16.
Zurück zum Zitat Yu H-Y, Qin Z-Y, Liu Y-N, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89:971–978CrossRef Yu H-Y, Qin Z-Y, Liu Y-N, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89:971–978CrossRef
17.
Zurück zum Zitat Srithep Y, Ellingham T, Peng J et al (2013) Melt compounding of poly (3-hydroxybutyrate- co-3- hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449CrossRef Srithep Y, Ellingham T, Peng J et al (2013) Melt compounding of poly (3-hydroxybutyrate- co-3- hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449CrossRef
18.
Zurück zum Zitat Hermida ÉB, Ruiz I, Baldessari A, Kreimann E (2012) Biodegradation and histological response of PHBV porous scaffolds. Biocell A9:1–4 Hermida ÉB, Ruiz I, Baldessari A, Kreimann E (2012) Biodegradation and histological response of PHBV porous scaffolds. Biocell A9:1–4
19.
Zurück zum Zitat Sultana N (2013) Biodegradable polymer-based scaffolds for bone tissue engineering. Springer, BerlinCrossRef Sultana N (2013) Biodegradable polymer-based scaffolds for bone tissue engineering. Springer, BerlinCrossRef
20.
Zurück zum Zitat Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 20:1–12 Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 20:1–12
21.
Zurück zum Zitat Deroiné M, Le Duigou A, Corre Y-M et al (2014) Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Degrad Stab 105:237–247CrossRef Deroiné M, Le Duigou A, Corre Y-M et al (2014) Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Degrad Stab 105:237–247CrossRef
22.
Zurück zum Zitat Stock SR (2008) Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53:129–181CrossRef Stock SR (2008) Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53:129–181CrossRef
23.
Zurück zum Zitat Meyer JP, Adio SA, Sharifpur M, Nwosu PN (2016) The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng 37:387–421CrossRef Meyer JP, Adio SA, Sharifpur M, Nwosu PN (2016) The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng 37:387–421CrossRef
24.
Zurück zum Zitat Murshed SMS, Estellé P (2017) A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev 76:1134–1152CrossRef Murshed SMS, Estellé P (2017) A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev 76:1134–1152CrossRef
25.
Zurück zum Zitat Bashirnezhad K, Bazri S, Safaei MR et al (2016) Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf 73:114–123CrossRef Bashirnezhad K, Bazri S, Safaei MR et al (2016) Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf 73:114–123CrossRef
26.
Zurück zum Zitat Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Nanocomposite poly(vinylidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochim Acta 214:38–48CrossRef Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Nanocomposite poly(vinylidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochim Acta 214:38–48CrossRef
27.
Zurück zum Zitat Wu J, Xue K, Li H, Sun J, Liu K (2013) Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS ONE 8:1–9 Wu J, Xue K, Li H, Sun J, Liu K (2013) Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS ONE 8:1–9
28.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
29.
Zurück zum Zitat Naseri N, Poirier JM, Girandon L, Fröhlich M, Oksman K, Mathew AP (2016) 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6:5999–6007CrossRef Naseri N, Poirier JM, Girandon L, Fröhlich M, Oksman K, Mathew AP (2016) 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6:5999–6007CrossRef
30.
Zurück zum Zitat Whang K, Healy KE, Elenz DR, Nam EK et al (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5:35–51CrossRef Whang K, Healy KE, Elenz DR, Nam EK et al (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5:35–51CrossRef
31.
Zurück zum Zitat Yang S, Leong K-F, Du Z, Chua C-K (2001) The design of scaffolds for use in tissue engineering. Part I Tradit Factors Tissue Eng 7:679–689 Yang S, Leong K-F, Du Z, Chua C-K (2001) The design of scaffolds for use in tissue engineering. Part I Tradit Factors Tissue Eng 7:679–689
32.
Zurück zum Zitat Bruzauskaite I, Bironaite D, Bagdonas E, Bernotiene E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68:355–369CrossRef Bruzauskaite I, Bironaite D, Bagdonas E, Bernotiene E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68:355–369CrossRef
33.
Zurück zum Zitat Murphy CM, O’Brien FJ (2010) Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr 4:377–381CrossRef Murphy CM, O’Brien FJ (2010) Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr 4:377–381CrossRef
34.
Zurück zum Zitat Ghorbani F, Zamanian A (2016) Oriented microstructure in neural tissue engineering: a review. J Tissue Sci Eng 07:1–4CrossRef Ghorbani F, Zamanian A (2016) Oriented microstructure in neural tissue engineering: a review. J Tissue Sci Eng 07:1–4CrossRef
35.
Zurück zum Zitat Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412CrossRef Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412CrossRef
36.
Zurück zum Zitat Diermann SH, Lu M, Zhao Y, Vandi L, Dargusch M, Huang H (2018) Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering. J Mech Behav Biomed Mater 84:151–160CrossRef Diermann SH, Lu M, Zhao Y, Vandi L, Dargusch M, Huang H (2018) Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering. J Mech Behav Biomed Mater 84:151–160CrossRef
37.
Zurück zum Zitat Ku D N (2005) Flexible Spinal Disc. US 2005/0055099 A1 Ku D N (2005) Flexible Spinal Disc. US 2005/0055099 A1
38.
Zurück zum Zitat Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151CrossRef Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151CrossRef
39.
Zurück zum Zitat Sabree I, Gough JE, Derby B (2015) Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram Int 41:8425–8432CrossRef Sabree I, Gough JE, Derby B (2015) Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram Int 41:8425–8432CrossRef
40.
Zurück zum Zitat Zhu H, Shen J, Feng X, Zhang H, Guo Y, Chen J (2010) Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds. Mater Sci Eng C 30:132–140CrossRef Zhu H, Shen J, Feng X, Zhang H, Guo Y, Chen J (2010) Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds. Mater Sci Eng C 30:132–140CrossRef
41.
Zurück zum Zitat Zhou C, Wu Q (2012) Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies. In: Neralla S (ed) Nanocrystals-synthesis, characterization and applications. IntechOpen, London, pp 103–120 Zhou C, Wu Q (2012) Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies. In: Neralla S (ed) Nanocrystals-synthesis, characterization and applications. IntechOpen, London, pp 103–120
42.
Zurück zum Zitat Montanheiro TLA, Montagna LS, de Farias MA, Magalhães JA, Tada DB et al (2018) Cytotoxicity and physico-chemical evaluation of acetylated and pegylated cellulose nanocrystals. J Nanopart Res 20:206CrossRef Montanheiro TLA, Montagna LS, de Farias MA, Magalhães JA, Tada DB et al (2018) Cytotoxicity and physico-chemical evaluation of acetylated and pegylated cellulose nanocrystals. J Nanopart Res 20:206CrossRef
43.
Zurück zum Zitat Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607CrossRef Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607CrossRef
44.
Zurück zum Zitat Pelaz B, del Pino P, Maffre P, Hartmann R et al (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008CrossRef Pelaz B, del Pino P, Maffre P, Hartmann R et al (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008CrossRef
45.
Zurück zum Zitat Hu SG, Jou CH, Yang MC (2003) Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials 24:2685–2693CrossRef Hu SG, Jou CH, Yang MC (2003) Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials 24:2685–2693CrossRef
46.
Zurück zum Zitat Hu S-G, Jou C-H, Yang M-C (2004) Biocompatibility and antibacterial activity of chitosan and collagen immobilized poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid). Carbohydr Polym 58:173–179CrossRef Hu S-G, Jou C-H, Yang M-C (2004) Biocompatibility and antibacterial activity of chitosan and collagen immobilized poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid). Carbohydr Polym 58:173–179CrossRef
47.
Zurück zum Zitat Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y (2016) Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sciende Eng C 58:757–767CrossRef Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y (2016) Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sciende Eng C 58:757–767CrossRef
Metadaten
Titel
Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds
verfasst von
Thaís Larissa do Amaral Montanheiro
Larissa Stieven Montagna
Viorica Patrulea
Olivier Jordan
Gerrit Borchard
Gabriela Matheus Monteiro Lobato
Luiz Henrique Catalani
Ana Paula Lemes
Publikationsdatum
06.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03398-8

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.