Skip to main content
Erschienen in: Strength of Materials 4/2018

24.10.2018

Evaluation of Fatigue Steel Damage Stages in Stress Concentrators Considering Inelastic Strain Kinetics

verfasst von: A. I. Novikov, G. V. Tsybanev

Erschienen in: Strength of Materials | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An application of the proposed model of ultimate exhaustion of cyclic plasticity is considered for the calculation of fatigue damage stages of structural elements in the elastoplastic statement and kinetics of the stress-strain state (SSS) under conditions of stress concentration. The paper outlines the defining equations of the model of ultimate exhaustion of cyclic plasticity. The basic difference between the model solutions and the current model lies in the use of cyclic stress–strain diagrams dependent on the number of loading cycles, which is attained via the introduction of the function reflecting the variation of inelastic strains into the plastic part of the Osgood–Ramsberg equation. Based on the experimental data under symmetric tension–compression on smooth specimens, refinement of the function parameters and the introduction of ultimate values are performed. Then, these results are employed in the development of the approach to calculating the lifetime of structural elements with the presence of a stress gradient in the elastoplastic statement. The approach is used to determine the fatigue life of cylindrical specimens with stress concentrators. With this aim in view, the processes of damage to thin layers of the material with the required value of their discretization are stepwise determined by the model of ultimate exhaustion of plasticity. To define the kinetics of elastoplastic SSS within the minimal section of the specimen, a hybrid numerical-analytical scheme of calculation is proposed applying the method of finite elements (FEM) at the points of support and weight functions. To consider the variations of the numerical solution depending on the change of elastoplastic properties with the increase of the number of loading cycles at various levels of stress amplitude, FEM solutions are standardized (the same as for equations of equilibrium). The solutions to these equations allow one to determine the kinetics of distribution diagrams of the elastoplastic SSS, fatigue damage to the specimens with stress concentrator and their lifetime for the material with non-stabilized cyclic deformation. The lifetime of fatigue damage to the specimens with stress concentrators is defined via the criterion of nucleation and propagation of the short crack of the specified size. The results of the comparison between the experimental and calculated lifetimes for steels 45 and 1Kh2M demonstrate a good correlation between the results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. T. Troschenko, Fatigue of Metals under Nonuniform Stress State [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2011). V. T. Troschenko, Fatigue of Metals under Nonuniform Stress State [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2011).
2.
Zurück zum Zitat P. A. Fomichev, “Prediction of fatigue life of a notched body by the local stress-strain state. Part 3. Allowing for stress and strain gradients,” Strength Mater., 32, No. 4, 316–322 (2000).CrossRef P. A. Fomichev, “Prediction of fatigue life of a notched body by the local stress-strain state. Part 3. Allowing for stress and strain gradients,” Strength Mater., 32, No. 4, 316–322 (2000).CrossRef
3.
Zurück zum Zitat N. O. Larrosa, A. Navarro, and V. Chaves, “Calculating fatigue limits of notched components of arbitrary size and shape with cracks growing in mode I,” Int. J. Fatigue, 74, 142–155 (2015).CrossRef N. O. Larrosa, A. Navarro, and V. Chaves, “Calculating fatigue limits of notched components of arbitrary size and shape with cracks growing in mode I,” Int. J. Fatigue, 74, 142–155 (2015).CrossRef
4.
Zurück zum Zitat R. Tovo and P. Livieri, “An implicit gradient application to fatigue of complex structures,” Eng. Fract. Mech., 75, No. 7, 1804–1814 (2008).CrossRef R. Tovo and P. Livieri, “An implicit gradient application to fatigue of complex structures,” Eng. Fract. Mech., 75, No. 7, 1804–1814 (2008).CrossRef
5.
Zurück zum Zitat B. Szabó, R. Actis, and D. Rusk, “Predictors of fatigue damage accumulation in the neighborhood of small notches,” Int. J. Fatigue, 92, 52–60 (2016).CrossRef B. Szabó, R. Actis, and D. Rusk, “Predictors of fatigue damage accumulation in the neighborhood of small notches,” Int. J. Fatigue, 92, 52–60 (2016).CrossRef
6.
Zurück zum Zitat D. Krzyýak and T. Ùagoda, “Fatigue life estimation of notched elements with use of non-local volumetric method,” Int. J. Fatigue, 61, 59–66 (2014).CrossRef D. Krzyýak and T. Ùagoda, “Fatigue life estimation of notched elements with use of non-local volumetric method,” Int. J. Fatigue, 61, 59–66 (2014).CrossRef
7.
Zurück zum Zitat A. Fatemi, Z. Zeng, and A. Plaseied, “Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels,” Int. J. Fatigue, 26, No. 6, 663–672 (2004).CrossRef A. Fatemi, Z. Zeng, and A. Plaseied, “Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels,” Int. J. Fatigue, 26, No. 6, 663–672 (2004).CrossRef
8.
Zurück zum Zitat K. Molski and G. Glinka, “A method of elastic-plastic stress and strain calculation at a notch root,” Mater. Sci. Eng, 50, No. 1, 93–100 (1981).CrossRef K. Molski and G. Glinka, “A method of elastic-plastic stress and strain calculation at a notch root,” Mater. Sci. Eng, 50, No. 1, 93–100 (1981).CrossRef
9.
Zurück zum Zitat C. Santus, D. Taylor, and M. Benedetti, “Determination of the fatigue critical distance according to the Line and the Point Methods with rounded V-notched specimen,” Int. J. Fatigue, 106, 208–218 (2018).CrossRef C. Santus, D. Taylor, and M. Benedetti, “Determination of the fatigue critical distance according to the Line and the Point Methods with rounded V-notched specimen,” Int. J. Fatigue, 106, 208–218 (2018).CrossRef
10.
Zurück zum Zitat F. Shen, G. Z. Voyiadjis, W. Hu, and Q. Meng, “Analysis on the fatigue damage evolution of notched specimens with consideration of cyclic plasticity,” Fatigue Fract. Eng. Mater. Struct., 38, No. 10, 1194–1208 (2015).CrossRef F. Shen, G. Z. Voyiadjis, W. Hu, and Q. Meng, “Analysis on the fatigue damage evolution of notched specimens with consideration of cyclic plasticity,” Fatigue Fract. Eng. Mater. Struct., 38, No. 10, 1194–1208 (2015).CrossRef
11.
Zurück zum Zitat M. D. Chapetti, N. Katsura, T. Tagawa, and T. Miyata, “Static strengthening and fatigue blunt-notch sensitivity in low-carbon steels,” Int. J. Fatigue, 23, No. 3, 207–214 (2001).CrossRef M. D. Chapetti, N. Katsura, T. Tagawa, and T. Miyata, “Static strengthening and fatigue blunt-notch sensitivity in low-carbon steels,” Int. J. Fatigue, 23, No. 3, 207–214 (2001).CrossRef
12.
Zurück zum Zitat V. T. Troschenko, L. A. Khamaza, and G. V. Tsybanev, Strain- and Energy-Based Methods of Accelerated Determination of Fatigue Limits of Metals [in Russian], Naukova Dumka, Kiev (1979). V. T. Troschenko, L. A. Khamaza, and G. V. Tsybanev, Strain- and Energy-Based Methods of Accelerated Determination of Fatigue Limits of Metals [in Russian], Naukova Dumka, Kiev (1979).
13.
Zurück zum Zitat J. Polák, M. Klesnil, and P. Lucáð, “High cycle plastic stress-strain response of metals,” Mater. Sci. Eng., 15, Nos. 2–3, 231–237 (1974).CrossRef J. Polák, M. Klesnil, and P. Lucáð, “High cycle plastic stress-strain response of metals,” Mater. Sci. Eng., 15, Nos. 2–3, 231–237 (1974).CrossRef
14.
Zurück zum Zitat V. T. Troshchenko and V. I. Dragan, “Laws of plastic strain and fatigue fracture of metals in torsion,” Strength Mater., 14, No. 5, 569–576 (1982).CrossRef V. T. Troshchenko and V. I. Dragan, “Laws of plastic strain and fatigue fracture of metals in torsion,” Strength Mater., 14, No. 5, 569–576 (1982).CrossRef
15.
Zurück zum Zitat J. Polák and P. Zezulka, “Short crack growth and fatigue life in austenitic-ferritic duplex stainless steel,” Fatigue Fract. Eng. Mater. Struct., 28, No. 10, 923–935 (2005).CrossRef J. Polák and P. Zezulka, “Short crack growth and fatigue life in austenitic-ferritic duplex stainless steel,” Fatigue Fract. Eng. Mater. Struct., 28, No. 10, 923–935 (2005).CrossRef
16.
Zurück zum Zitat D. Jiða, P. Liðkutin, T. Kruml, and J. Polák, “Small fatigue growth in aluminium alloy EN-AW 6082/T6,” Int. J. Fatigue, 32, No. 12, 1913–1920 (2010).CrossRef D. Jiða, P. Liðkutin, T. Kruml, and J. Polák, “Small fatigue growth in aluminium alloy EN-AW 6082/T6,” Int. J. Fatigue, 32, No. 12, 1913–1920 (2010).CrossRef
17.
Zurück zum Zitat G. V. Tsyban’ov and A. I. Novikov, “Assessment of autonomous damage residual life of the material by the model of ultimate exhaustion of plasticity,” Visn. Ternopil Derzh. Tekh. Univ., No 3, 53–65 (2009). G. V. Tsyban’ov and A. I. Novikov, “Assessment of autonomous damage residual life of the material by the model of ultimate exhaustion of plasticity,” Visn. Ternopil Derzh. Tekh. Univ., No 3, 53–65 (2009).
18.
Zurück zum Zitat G. V. Tsybanev and A. I. Novikov, “Ultimate exhaustion of local plasticity as a criterion of fatigue crack initiation,” Strength Mater., 42, No. 1, 101–107 (2010).CrossRef G. V. Tsybanev and A. I. Novikov, “Ultimate exhaustion of local plasticity as a criterion of fatigue crack initiation,” Strength Mater., 42, No. 1, 101–107 (2010).CrossRef
19.
Zurück zum Zitat G. V. Tsyban’ov and A. I. Novikov, “Ultimate hardening/softening model of material for fatigue crack initiation onset and determination of its parameters,” Int. J. Fatigue, 39, 15–24 (2012).CrossRef G. V. Tsyban’ov and A. I. Novikov, “Ultimate hardening/softening model of material for fatigue crack initiation onset and determination of its parameters,” Int. J. Fatigue, 39, 15–24 (2012).CrossRef
20.
Zurück zum Zitat J. L. Chaboche, “On some modifications of kinematic hardening to improve the description of ratcheting effects,” Int. J. Plasticity, 7, No. 7, 661–678 (1991).CrossRef J. L. Chaboche, “On some modifications of kinematic hardening to improve the description of ratcheting effects,” Int. J. Plasticity, 7, No. 7, 661–678 (1991).CrossRef
21.
Zurück zum Zitat J. L. Chaboche, “Time-independent constitutive theories for cyclic plasticity,” Int. J. Plasticity, 2, No. 2, 149–188 (1986).CrossRef J. L. Chaboche, “Time-independent constitutive theories for cyclic plasticity,” Int. J. Plasticity, 2, No. 2, 149–188 (1986).CrossRef
22.
Zurück zum Zitat V. T. Troshchenko, L. A. Khamaza, and Yu. D. Mishchenko, “Fatigue strength of notched specimens with regard for cyclic plastic strains,” Strength Mater., 10, No. 4, 381–385 (1978).CrossRef V. T. Troshchenko, L. A. Khamaza, and Yu. D. Mishchenko, “Fatigue strength of notched specimens with regard for cyclic plastic strains,” Strength Mater., 10, No. 4, 381–385 (1978).CrossRef
Metadaten
Titel
Evaluation of Fatigue Steel Damage Stages in Stress Concentrators Considering Inelastic Strain Kinetics
verfasst von
A. I. Novikov
G. V. Tsybanev
Publikationsdatum
24.10.2018
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 4/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-0005-7

Weitere Artikel der Ausgabe 4/2018

Strength of Materials 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.