Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Evaluation of Growth and Lipid Profiles in Six Different Microalgal Strains for Biofuel Production

verfasst von : Kashif M. Shaikh, Asha A. Nesamma, Malik Z. Abdin, Pavan P. Jutur

Erschienen in: Conference Proceedings of the Second International Conference on Recent Advances in Bioenergy Research

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microalgae have been considered as potential feedstock to produce higher biomass and lipid content that is more suitable for biofuel production than traditional oleaginous crop plants, thus seems to be on niche of accumulating energy reserves to produce next-generation renewables such as biofuels and high-value chemicals, an essential alternative for diminishing fossil fuels. Evaluation of growth and lipid profiles of few oleaginous microalgae under nutrient deprivation will be the method to identify best industrial strain for production of biofuel precursors at commercial level. In the present study, we have evaluated six microalgal (both marine and freshwater) strains to find out their metabolic responses on growth and lipid profiles under different nutrient limitation (nitrogen, phosphorous, and/or sulfur) conditions. Our results demonstrate that all these strains showed severe growth hampering by stress phenomenon under nutrient deprivation except for phosphorous limitation, wherein the growth was normal among marine strains. Algal oils are rich in the triacylglycerols (TAGs) that serve as material for conversion to biofuels. Therefore, changes triggered by nutrient deprivation in these microalgae primarily increased TAG content (~up to 20 mg L−1 D−1) among marine strains under nitrogen and phosphorous limitation, whereas among freshwater strains, nitrogen limitation played a major role in increasing the TAG content (~up to 15 mg L−1 D−1). In conclusion, the biomass and lipid productivity among marine strains seems to be higher when compared to freshwater strains. Among all these six potential strains, we evaluated and identified a suitable marine strain Parachlorella kessleri with better biomass and higher lipid productivity for further characterization, which may be a critical step toward making algae-derived biofuels economically competitive for industrial production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng D, He Q (2014) Assessment of environmental stresses for enhanced microalgae biofuel production–an overview. Front Energy Res 2:1–8CrossRef Cheng D, He Q (2014) Assessment of environmental stresses for enhanced microalgae biofuel production–an overview. Front Energy Res 2:1–8CrossRef
2.
Zurück zum Zitat Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621–639CrossRef Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621–639CrossRef
3.
Zurück zum Zitat Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRef Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRef
4.
Zurück zum Zitat Jutur PP, Asha AN (2015) Marine microalgae: exploring the systems through an omics approach for biofuel production. In: Kim S-K, Lee CG (eds) Marine bioenergy-trends and developments. Taylor and Francis Group, pp 149–162 Jutur PP, Asha AN (2015) Marine microalgae: exploring the systems through an omics approach for biofuel production. In: Kim S-K, Lee CG (eds) Marine bioenergy-trends and developments. Taylor and Francis Group, pp 149–162
5.
Zurück zum Zitat Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232CrossRef Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232CrossRef
6.
Zurück zum Zitat Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRef Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRef
7.
Zurück zum Zitat Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544CrossRef Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544CrossRef
8.
Zurück zum Zitat Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRef Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRef
9.
Zurück zum Zitat Tsai C-H, Warakanont J, Takeuchi T, Sears BB, Moellering ER, Benning C (2014) The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A 111:15833–15838CrossRef Tsai C-H, Warakanont J, Takeuchi T, Sears BB, Moellering ER, Benning C (2014) The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A 111:15833–15838CrossRef
10.
Zurück zum Zitat Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82:523–531CrossRef Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82:523–531CrossRef
11.
Zurück zum Zitat Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRef Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRef
12.
Zurück zum Zitat Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRef Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRef
13.
Zurück zum Zitat Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9CrossRef Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9CrossRef
14.
Zurück zum Zitat Day JG, Slocombe SP, Stanley MS (2011) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251CrossRef Day JG, Slocombe SP, Stanley MS (2011) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251CrossRef
15.
Zurück zum Zitat Kliphuis AM, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696CrossRef Kliphuis AM, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696CrossRef
16.
Zurück zum Zitat Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134CrossRef Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134CrossRef
17.
Zurück zum Zitat Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437CrossRef Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437CrossRef
18.
Zurück zum Zitat Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and waste-waters: a review. Appl Energy 88:3389–3401CrossRef Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and waste-waters: a review. Appl Energy 88:3389–3401CrossRef
19.
Zurück zum Zitat Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424CrossRef Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424CrossRef
20.
Zurück zum Zitat Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on biotechnological potential of microalgae. Crit Rev Microbiol 34:34–77CrossRef Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on biotechnological potential of microalgae. Crit Rev Microbiol 34:34–77CrossRef
21.
Zurück zum Zitat Spolaore P, Joannis-Cassan C, Duran E, Isambet A (2006) Commercial applications of microalgae. J Bio sci Bioeng 101:87–96CrossRef Spolaore P, Joannis-Cassan C, Duran E, Isambet A (2006) Commercial applications of microalgae. J Bio sci Bioeng 101:87–96CrossRef
22.
Zurück zum Zitat Fang S-C (2014) Metabolic engineering and molecular biotechnology of microalgae for fuel production. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 47–65CrossRef Fang S-C (2014) Metabolic engineering and molecular biotechnology of microalgae for fuel production. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 47–65CrossRef
23.
Zurück zum Zitat Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284CrossRef Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284CrossRef
24.
Zurück zum Zitat Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726CrossRef Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726CrossRef
25.
Zurück zum Zitat Singh A, Pant D, Olsen SI, Nigam PS (2012) Key issues to consider in microalgae based biodiesel production. Energy Edu Sci Technol Part A Energy Sci Res 29:687–700 Singh A, Pant D, Olsen SI, Nigam PS (2012) Key issues to consider in microalgae based biodiesel production. Energy Edu Sci Technol Part A Energy Sci Res 29:687–700
26.
Zurück zum Zitat Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agro Sustain Dev 31:605–629CrossRef Singh NK, Dhar DW (2011) Microalgae as second generation biofuel. A review. Agro Sustain Dev 31:605–629CrossRef
27.
Zurück zum Zitat Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410CrossRef Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410CrossRef
28.
Zurück zum Zitat Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184CrossRef Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184CrossRef
29.
Zurück zum Zitat Demirbas A, Fatih DM (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170CrossRef Demirbas A, Fatih DM (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170CrossRef
30.
Zurück zum Zitat Singh B, Guldhe A, Rawat I, Bux F (2014) Toward a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev 29:216–245CrossRef Singh B, Guldhe A, Rawat I, Bux F (2014) Toward a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev 29:216–245CrossRef
31.
Zurück zum Zitat Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428CrossRef Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428CrossRef
32.
Zurück zum Zitat Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532CrossRef Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532CrossRef
33.
Zurück zum Zitat Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239CrossRef Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239CrossRef
34.
Zurück zum Zitat Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 46:83–91CrossRef Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 46:83–91CrossRef
35.
Zurück zum Zitat Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use, 1st edn. Academic Press, San Diego Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use, 1st edn. Academic Press, San Diego
36.
Zurück zum Zitat Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29:587–595CrossRef Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29:587–595CrossRef
37.
Zurück zum Zitat Duong VT, Thomas-Hall SR, Schenk PM (2015) Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Front Plant Sci 6:359CrossRef Duong VT, Thomas-Hall SR, Schenk PM (2015) Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Front Plant Sci 6:359CrossRef
38.
Zurück zum Zitat Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRef Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRef
39.
Zurück zum Zitat Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59CrossRef Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59CrossRef
40.
Zurück zum Zitat Lim DK, Garg S, Timmins M, Zhang ES, Thomas-Hall SR, Schuhmann H, Li Y, Schenk PM (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS ONE 7:40751CrossRef Lim DK, Garg S, Timmins M, Zhang ES, Thomas-Hall SR, Schuhmann H, Li Y, Schenk PM (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS ONE 7:40751CrossRef
41.
Zurück zum Zitat Brown MR (1991) The amino acid and sugar composition of sixteen species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99CrossRef Brown MR (1991) The amino acid and sugar composition of sixteen species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99CrossRef
42.
Zurück zum Zitat Gordon JM, Polle JE (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975CrossRef Gordon JM, Polle JE (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975CrossRef
43.
Zurück zum Zitat Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86CrossRef Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86CrossRef
44.
Zurück zum Zitat Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:1–17CrossRef Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:1–17CrossRef
45.
Zurück zum Zitat Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biot 98:4805–4816CrossRef Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biot 98:4805–4816CrossRef
46.
Zurück zum Zitat Gao Y, Yang M, Wang C (2013) Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol 147:484–491CrossRef Gao Y, Yang M, Wang C (2013) Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol 147:484–491CrossRef
47.
Zurück zum Zitat Halsey KH, O’Malley RT, Graff JR, Milligan AJ, Behrenfeld MJ (2013) A common partitioning strategy fro photosynthetic products in evolutionary distinct phytoplankton species. New Phytol 198:1030–1038CrossRef Halsey KH, O’Malley RT, Graff JR, Milligan AJ, Behrenfeld MJ (2013) A common partitioning strategy fro photosynthetic products in evolutionary distinct phytoplankton species. New Phytol 198:1030–1038CrossRef
48.
Zurück zum Zitat Brown AP, Slabas AR, Rafferty JB (2009) Fatty acid biosynthesis in plants-metabolic pathways, structure and organization. In: Govindjee, Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions, 30th edn., pp 11–34 Brown AP, Slabas AR, Rafferty JB (2009) Fatty acid biosynthesis in plants-metabolic pathways, structure and organization. In: Govindjee, Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions, 30th edn., pp 11–34
49.
Zurück zum Zitat Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246CrossRef Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246CrossRef
50.
Zurück zum Zitat Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp. Bioresour Technol 101:5494–5500CrossRef Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp. Bioresour Technol 101:5494–5500CrossRef
51.
Zurück zum Zitat Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636CrossRef Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636CrossRef
52.
Zurück zum Zitat Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A et al (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:13415–13425CrossRef Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A et al (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:13415–13425CrossRef
Metadaten
Titel
Evaluation of Growth and Lipid Profiles in Six Different Microalgal Strains for Biofuel Production
verfasst von
Kashif M. Shaikh
Asha A. Nesamma
Malik Z. Abdin
Pavan P. Jutur
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6107-3_1