Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 2/2017

12.10.2016 | Original Paper

Evaluation of Various Pulse-Decay Laboratory Permeability Measurement Techniques for Highly Stressed Coals

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The transient technique for laboratory permeability measurement, proposed by Brace et al. (J Geophys Res 73:2225–2236, 1968) and widely used for conventional gas reservoir rocks, is the preferred method when testing low-permeability rocks in the laboratory. However, Brace et al.’s solution leads to considerable errors since it does not take into account compressive storage and sorption effect when applied to sorptive rocks, such as, coals and shales. To verify the applicability of this solution when used to characterize fluid flow behavior of coal, an in-depth investigation of permeability evolution for flow of helium and methane depletion was conducted for San Juan coals using the pressure pulse-decay method under best replicated in situ conditions. Three permeability solutions, Brace et al.’s (1968), Dicker and Smits’s (International meeting on petroleum engineering, Society of Petroleum Engineers, 1988) and Cui et al.’s (Geofluids 9:208–223, 2009), were utilized to establish the permeability trends. Both helium and methane permeability results exhibited very small difference between the Brace et al.’s solution and Dicker and Smits’s solution, indicating that the effect of compressive storage is negligible. However, methane permeability enhancement at low pressures due to coal matrix shrinkage resulting from gas desorption can be significant and this was observed in pressure response plots and the estimated permeability values using Cui et al.’s solution only. Therefore, it is recommended that Cui et al.’s solution be employed to correctly include the sorption effect when testing coal permeability using the transient technique. A series of experiments were also carried out to establish the stress-dependent permeability trend under constant effective stress condition, and then quantify the sole contribution of the sorption effect on permeability variation. By comparison with the laboratory data obtained under in situ stress/strain condition, it was verified that accelerated CBM production can be achieved by reducing the horizontal stresses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aronofsky J (1954) Effect of gas slip on unsteady flow of gas through porous media. J Appl Phys 25:48–53CrossRef Aronofsky J (1954) Effect of gas slip on unsteady flow of gas through porous media. J Appl Phys 25:48–53CrossRef
Zurück zum Zitat Brace WF, Walsh J, Frangos W (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236CrossRef Brace WF, Walsh J, Frangos W (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236CrossRef
Zurück zum Zitat Clarkson CR, Pan Z, Palmer I, Harpalani S (2010) Predicting sorption-induced strain and permeability increase with depletion for coalbed-methane reservoirs. SPE J 15:152–159CrossRef Clarkson CR, Pan Z, Palmer I, Harpalani S (2010) Predicting sorption-induced strain and permeability increase with depletion for coalbed-methane reservoirs. SPE J 15:152–159CrossRef
Zurück zum Zitat Cui X, Bustin R (2005) Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. Aapg Bull 89:1181–1202CrossRef Cui X, Bustin R (2005) Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. Aapg Bull 89:1181–1202CrossRef
Zurück zum Zitat Cui X, Bustin A, Bustin RM (2009) Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids 9:208–223CrossRef Cui X, Bustin A, Bustin RM (2009) Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids 9:208–223CrossRef
Zurück zum Zitat Dicker A, Smits R (1988) A practical approach for determining permeability from laboratory pressure-pulse decay measurements. In: International meeting on petroleum engineering. Society of Petroleum Engineers Dicker A, Smits R (1988) A practical approach for determining permeability from laboratory pressure-pulse decay measurements. In: International meeting on petroleum engineering. Society of Petroleum Engineers
Zurück zum Zitat Feng R, Harpalani S, Pandey R (2016) Laboratory measurement of stress-dependent coal permeability using pulse-decay technique and flow modeling with gas depletion. Fuel 177:76–86CrossRef Feng R, Harpalani S, Pandey R (2016) Laboratory measurement of stress-dependent coal permeability using pulse-decay technique and flow modeling with gas depletion. Fuel 177:76–86CrossRef
Zurück zum Zitat Gray I (1987) Reservoir engineering in coal seams: part 1-the physical process of gas storage and movement in coal seams. SPE Res Eng 2:28–34CrossRef Gray I (1987) Reservoir engineering in coal seams: part 1-the physical process of gas storage and movement in coal seams. SPE Res Eng 2:28–34CrossRef
Zurück zum Zitat Harpalani S, Chen G (1997) Influence of gas production induced volumetric strain on permeability of coal. Geotech Geol Eng 15:303–325 Harpalani S, Chen G (1997) Influence of gas production induced volumetric strain on permeability of coal. Geotech Geol Eng 15:303–325
Zurück zum Zitat Harpalani S, Schraufnagel R (1990) Influence of matrix shrinkage and compressibility on gas production from coalbed methane reservoirs. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers Harpalani S, Schraufnagel R (1990) Influence of matrix shrinkage and compressibility on gas production from coalbed methane reservoirs. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers
Zurück zum Zitat Harpalani S, Prusty BK, Dutta P (2006) Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration. Energ Fuel 20:1591–1599. doi:10.1021/Ef0504341 CrossRef Harpalani S, Prusty BK, Dutta P (2006) Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration. Energ Fuel 20:1591–1599. doi:10.​1021/​Ef0504341 CrossRef
Zurück zum Zitat Jones S (1997) A technique for faster pulse-decay permeability measurements in tight rocks. SPE Form Eval 12:19–26CrossRef Jones S (1997) A technique for faster pulse-decay permeability measurements in tight rocks. SPE Form Eval 12:19–26CrossRef
Zurück zum Zitat Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRef Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRef
Zurück zum Zitat Lin W (1977) Compressibility fluid flow through rocks of variable permeability. University of California Lin W (1977) Compressibility fluid flow through rocks of variable permeability. University of California
Zurück zum Zitat Lin W (1982) Parametric analyses of the transient method of measuring permeability. J Geophys Res Solid Earth (1978–2012) 87:1055–1060CrossRef Lin W (1982) Parametric analyses of the transient method of measuring permeability. J Geophys Res Solid Earth (1978–2012) 87:1055–1060CrossRef
Zurück zum Zitat Liu S (2012) Estimation of different coal compressibilities of coalbed methane reservoirs under replicated in situ condition. Southern Illinous University Carbondale, USA Liu S (2012) Estimation of different coal compressibilities of coalbed methane reservoirs under replicated in situ condition. Southern Illinous University Carbondale, USA
Zurück zum Zitat Liu S, Harpalani S (2014c) Evaluation of in situ stress changes with gas depletion of coalbed methane reservoirs. J Geophys Res Solid Earth 119:6263–6276. doi:10.1002/2014jb011228 CrossRef Liu S, Harpalani S (2014c) Evaluation of in situ stress changes with gas depletion of coalbed methane reservoirs. J Geophys Res Solid Earth 119:6263–6276. doi:10.​1002/​2014jb011228 CrossRef
Zurück zum Zitat Palmer I, Mansoori J (1996) How permeability depends on stress and pore pressure in coalbeds: a new model. In: SPE annual technical conference and exhibition, Denvor, Colorado, USA. Society of Petroleum Engineers Palmer I, Mansoori J (1996) How permeability depends on stress and pore pressure in coalbeds: a new model. In: SPE annual technical conference and exhibition, Denvor, Colorado, USA. Society of Petroleum Engineers
Zurück zum Zitat Pan Z, Connell L, Camilleri M (2010) Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery. Int J Coal Geol 82:252–261CrossRef Pan Z, Connell L, Camilleri M (2010) Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery. Int J Coal Geol 82:252–261CrossRef
Zurück zum Zitat Robertson E (2005) Measurement and modeling of sorption-induced strain and permeability changes in coal. Colorado School of Mines, USACrossRef Robertson E (2005) Measurement and modeling of sorption-induced strain and permeability changes in coal. Colorado School of Mines, USACrossRef
Zurück zum Zitat Seidle J, Jeansonne M, Erickson D (1992) Application of matchstick geometry to stress dependent permeability in coals. In: SPE rocky mountain regional meeting. Society of Petroleum Engineers Seidle J, Jeansonne M, Erickson D (1992) Application of matchstick geometry to stress dependent permeability in coals. In: SPE rocky mountain regional meeting. Society of Petroleum Engineers
Zurück zum Zitat Shi J, Durucan S (2003) Changes in permeability of coalbeds during primary recovery–part 1: model formulation and analysis. In: Proceedings of the 2003 international coalbed methane symposium. University of Alabama, Tuscaloosa, Alabama Shi J, Durucan S (2003) Changes in permeability of coalbeds during primary recovery–part 1: model formulation and analysis. In: Proceedings of the 2003 international coalbed methane symposium. University of Alabama, Tuscaloosa, Alabama
Zurück zum Zitat Shi J, Durucan S (2005) A model for changes in coalbed permeability during primary and enhanced methane recovery. SPE Reserv Eval Eng 8:291–299. doi:10.2118/87230-Pa CrossRef Shi J, Durucan S (2005) A model for changes in coalbed permeability during primary and enhanced methane recovery. SPE Reserv Eval Eng 8:291–299. doi:10.​2118/​87230-Pa CrossRef
Zurück zum Zitat Singh V (2014) Assessment of sudden permeability uptick with depletion in coalbed reservoir. Southern Illinois University Carbondale, USA Singh V (2014) Assessment of sudden permeability uptick with depletion in coalbed reservoir. Southern Illinois University Carbondale, USA
Zurück zum Zitat Sutherland H, Cave S (1980) Argon gas permeability of New Mexico rock salt under hydrostatic compression. In: International journal of rock mechanics and mining sciences & geomechanics abstracts, vol 5. Elsevier, pp 281–288 Sutherland H, Cave S (1980) Argon gas permeability of New Mexico rock salt under hydrostatic compression. In: International journal of rock mechanics and mining sciences & geomechanics abstracts, vol 5. Elsevier, pp 281–288
Zurück zum Zitat Wang S, Elsworth D, Liu J (2011) Permeability evolution in fractured coal: the roles of fracture geometry and water-content. Int J Coal Geol 87:13–25CrossRef Wang S, Elsworth D, Liu J (2011) Permeability evolution in fractured coal: the roles of fracture geometry and water-content. Int J Coal Geol 87:13–25CrossRef
Zurück zum Zitat Wang S, Elsworth D, Liu J (2012) A mechanistic model for permeability evolution in fractured sorbing media. J Geophys Res Solid Earth (1978–2012) B06205 Wang S, Elsworth D, Liu J (2012) A mechanistic model for permeability evolution in fractured sorbing media. J Geophys Res Solid Earth (1978–2012) B06205
Zurück zum Zitat Wang S, Elsworth D, Liu J (2013) Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams. Int J Rock Mech Min 58:34–45 Wang S, Elsworth D, Liu J (2013) Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams. Int J Rock Mech Min 58:34–45
Zurück zum Zitat Wang Y, Liu S, Elsworth D (2015) Laboratory investigations of gas flow behaviors in tight anthracite and evaluation of different pulse-decay methods on permeability estimation. Int J Coal Geol 149:118–128CrossRef Wang Y, Liu S, Elsworth D (2015) Laboratory investigations of gas flow behaviors in tight anthracite and evaluation of different pulse-decay methods on permeability estimation. Int J Coal Geol 149:118–128CrossRef
Zurück zum Zitat Zhao Y, Hu Y, Wei J, Yang D (2003) The experimental approach to effective stress law of coal mass by effect of methane. Transp Porous Med 53:235–244CrossRef Zhao Y, Hu Y, Wei J, Yang D (2003) The experimental approach to effective stress law of coal mass by effect of methane. Transp Porous Med 53:235–244CrossRef
Metadaten
Titel
Evaluation of Various Pulse-Decay Laboratory Permeability Measurement Techniques for Highly Stressed Coals
Publikationsdatum
12.10.2016
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 2/2017
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-016-1109-7

Weitere Artikel der Ausgabe 2/2017

Rock Mechanics and Rock Engineering 2/2017 Zur Ausgabe