Skip to main content
Erschienen in: Journal of Engineering Thermophysics 3/2022

01.09.2022

Evaporation of Water Droplet on Heated Textured Wall at Various Contact Angles

verfasst von: S. Ya. Misyura

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evaporation of water droplet on various heated surfaces (smooth and textured walls) has been studied experimentally. The temperature field of the droplet surface has a more uniform distribution on a hydrophilic textured surface of substrate. During evaporation of water droplet on a hydrophobic wall, the temperature field is substantially inhomogeneous. Measurements in a vertical cross section of a droplet on a hydrophobic surface were done by the particle image velocimetry method. They reveal occurrence of a toroidal vortex flow in the liquid. The average velocity of free convective motion in a droplet decreases as the evaporation goes on. The maximum heat flux during droplet evaporation corresponds to a hydrophilic textured surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rose, J.W., Condensation Heat Transfer Fundamentals, Chem. Engin. Res. Des., 1998, vol. 15, pp. 143–152.CrossRef Rose, J.W., Condensation Heat Transfer Fundamentals, Chem. Engin. Res. Des., 1998, vol. 15, pp. 143–152.CrossRef
2.
Zurück zum Zitat Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-Based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Thermal Engin., 2017, vol. 125, pp. 104–110.CrossRef Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-Based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Thermal Engin., 2017, vol. 125, pp. 104–110.CrossRef
3.
Zurück zum Zitat Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effects of Flow Turbulence on Film Cooling Efficiency, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2117–2125.CrossRef Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effects of Flow Turbulence on Film Cooling Efficiency, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2117–2125.CrossRef
4.
Zurück zum Zitat Nebuchinov, A.S., Lozhkin, Y.A., Bilsky, A.V., and Markovich, D.M., Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet, Exp. Thermal Fluid Sci., 2017, vol. 80, pp. 139–146.CrossRef Nebuchinov, A.S., Lozhkin, Y.A., Bilsky, A.V., and Markovich, D.M., Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet, Exp. Thermal Fluid Sci., 2017, vol. 80, pp. 139–146.CrossRef
5.
Zurück zum Zitat Misyura, S.Y., Wall Effect on Heat Transfer Crisis, Experimental Thermal and Fluid Science, 2016, vol. 70, pp. 389–396.CrossRef Misyura, S.Y., Wall Effect on Heat Transfer Crisis, Experimental Thermal and Fluid Science, 2016, vol. 70, pp. 389–396.CrossRef
6.
Zurück zum Zitat Misyura, S.Y., The Anomalously High Rate of Crystallization, Controlled by Crystal Forms under the Conditions of a Limited Liquid Volume, Crystal Growth Design, 2018, vol. 18, pp. 1327–1338.CrossRef Misyura, S.Y., The Anomalously High Rate of Crystallization, Controlled by Crystal Forms under the Conditions of a Limited Liquid Volume, Crystal Growth Design, 2018, vol. 18, pp. 1327–1338.CrossRef
7.
Zurück zum Zitat Tonini, S. and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications, Int. J. Thermal Sci., 2015, vol. 89, pp. 245–253.CrossRef Tonini, S. and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications, Int. J. Thermal Sci., 2015, vol. 89, pp. 245–253.CrossRef
8.
Zurück zum Zitat Misyura, S.Y., Dependence of Wettability of Microtextured Wall on the Heat and Mass Transfer: Simple Estimates for Convection and Heat Transfer, Int. J. Mech. Sci., 2020, vol. 170, p. 105353.CrossRef Misyura, S.Y., Dependence of Wettability of Microtextured Wall on the Heat and Mass Transfer: Simple Estimates for Convection and Heat Transfer, Int. J. Mech. Sci., 2020, vol. 170, p. 105353.CrossRef
9.
Zurück zum Zitat Misyura, S.Y., The Influence of Convection on Heat Transfer in a Water Layer on a Heated Structured Wall, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 14–21.CrossRef Misyura, S.Y., The Influence of Convection on Heat Transfer in a Water Layer on a Heated Structured Wall, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 14–21.CrossRef
10.
Zurück zum Zitat Ta, V.D., Dunn, A., Wasley, T.J., Li, J., Kay, R.W., Stringer, J., Smith, P.J., Esenturk, E., Connaughton, C., and Shephard, J.D., Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition, Appl. Surface Sci., 2016, vol. 365, pp. 153–159.ADSCrossRef Ta, V.D., Dunn, A., Wasley, T.J., Li, J., Kay, R.W., Stringer, J., Smith, P.J., Esenturk, E., Connaughton, C., and Shephard, J.D., Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition, Appl. Surface Sci., 2016, vol. 365, pp. 153–159.ADSCrossRef
11.
Zurück zum Zitat Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Y., Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel, Appl. Surf. Sci., 2018, vol. 436, pp. 263–267.ADSCrossRef Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Y., Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel, Appl. Surf. Sci., 2018, vol. 436, pp. 263–267.ADSCrossRef
12.
Zurück zum Zitat Chebolu, A., Laha, B., Ghosh, M., and Nagahanumaiah, Investigation on Bacterial Adhesion and Colonisation Resistance over Laser-Machined Micro Patterned Surfaces, Micro Nano Lett., 2013, vol. 8, pp. 280–283.CrossRef Chebolu, A., Laha, B., Ghosh, M., and Nagahanumaiah, Investigation on Bacterial Adhesion and Colonisation Resistance over Laser-Machined Micro Patterned Surfaces, Micro Nano Lett., 2013, vol. 8, pp. 280–283.CrossRef
13.
Zurück zum Zitat Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., and Boinovich, L.B., Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, vol. 332, pp. 513–517.ADSCrossRef Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., and Boinovich, L.B., Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, vol. 332, pp. 513–517.ADSCrossRef
14.
Zurück zum Zitat Terekhov, V.I. and Shishkin, N.E., Influence of a Surfactant on Evaporation Intensity of Suspended Water Droplets, Colloid. J., 2021, vol. 83, pp. 135–141.CrossRef Terekhov, V.I. and Shishkin, N.E., Influence of a Surfactant on Evaporation Intensity of Suspended Water Droplets, Colloid. J., 2021, vol. 83, pp. 135–141.CrossRef
15.
Zurück zum Zitat Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.CrossRef Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.CrossRef
16.
Zurück zum Zitat Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical Analysis of Products Obtained by Nanosecond Laser Ablation, Tech. Phys., 2000, vol. 45, pp. 1219–1222.CrossRef Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical Analysis of Products Obtained by Nanosecond Laser Ablation, Tech. Phys., 2000, vol. 45, pp. 1219–1222.CrossRef
17.
Zurück zum Zitat Libenson, M.N., Surface Electromagnetic Waves in Optics, Zh. Fiz., 1996, pp. 103–110. Libenson, M.N., Surface Electromagnetic Waves in Optics, Zh. Fiz., 1996, pp. 103–110.
18.
Zurück zum Zitat Lee, D.J. and Jeong, S.H., Analysis of Recoil Force during Nd:YAG Laser Ablation of Silicon, Appl. Phys. A, 2004, vol. 79, pp. 1341–1344.ADSCrossRef Lee, D.J. and Jeong, S.H., Analysis of Recoil Force during Nd:YAG Laser Ablation of Silicon, Appl. Phys. A, 2004, vol. 79, pp. 1341–1344.ADSCrossRef
19.
Zurück zum Zitat Zhang, X., Tan, S., Zhao, N., Guo, X., Zhang, X., Zhang, Y., and Xu, J., Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces, ChemPhysChem, 2006, vol. 7, pp. 2067–2070.CrossRef Zhang, X., Tan, S., Zhao, N., Guo, X., Zhang, X., Zhang, Y., and Xu, J., Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces, ChemPhysChem, 2006, vol. 7, pp. 2067–2070.CrossRef
20.
Zurück zum Zitat McHale, G., Aqil, S., Shirtcliffe, N.J., Newton, M.I., and Erbil, H.Y., Analysis of Droplet Evaporation on a Superhydrophobic Surface, Langmuir, 2005, vol. 21, pp. 11053–11060.CrossRef McHale, G., Aqil, S., Shirtcliffe, N.J., Newton, M.I., and Erbil, H.Y., Analysis of Droplet Evaporation on a Superhydrophobic Surface, Langmuir, 2005, vol. 21, pp. 11053–11060.CrossRef
21.
Zurück zum Zitat Sobac, B. and Brutin, D., Triple-Line Behavior and Wettability Controlled by Nanocoated Substrates: Influence on Sessile Drop Evaporation, Langmuir, 2011, vol. 27, pp. 14999–15007.CrossRef Sobac, B. and Brutin, D., Triple-Line Behavior and Wettability Controlled by Nanocoated Substrates: Influence on Sessile Drop Evaporation, Langmuir, 2011, vol. 27, pp. 14999–15007.CrossRef
22.
Zurück zum Zitat Shin, D.H., Lee, S.H., Choi, C.K., and Retterer, S., The Evaporation and Wetting Dynamics of Sessile Water Droplets on Submicron-Scale Patterned Silicon Hydrophobic Surfaces, J. Micromech. Microeng., 2010, vol. 20, p. 055021.ADSCrossRef Shin, D.H., Lee, S.H., Choi, C.K., and Retterer, S., The Evaporation and Wetting Dynamics of Sessile Water Droplets on Submicron-Scale Patterned Silicon Hydrophobic Surfaces, J. Micromech. Microeng., 2010, vol. 20, p. 055021.ADSCrossRef
23.
Zurück zum Zitat Jung, Y.C. and Bhushan, B., Wetting Behaviour during Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces, J. Microscopy, 2008, vol. 229, pp. 127–140.MathSciNetCrossRef Jung, Y.C. and Bhushan, B., Wetting Behaviour during Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces, J. Microscopy, 2008, vol. 229, pp. 127–140.MathSciNetCrossRef
24.
Zurück zum Zitat Anantharaju, N., Panchagnula, M., and Neti, S., Evaporating Drops on Patterned Surfaces: Transition from Pinned to Moving Triple Line, J. Colloid Interf. Sci., 2009, vol. 337, pp. 176–182.ADSCrossRef Anantharaju, N., Panchagnula, M., and Neti, S., Evaporating Drops on Patterned Surfaces: Transition from Pinned to Moving Triple Line, J. Colloid Interf. Sci., 2009, vol. 337, pp. 176–182.ADSCrossRef
25.
Zurück zum Zitat Misyura, S.Y., The Influence of Characteristic Scales of Convection on Non-Isothermal Evaporation of a Thin Liquid Layer, Sci. Rep., 2018, vol. 8, p. 11521.ADSCrossRef Misyura, S.Y., The Influence of Characteristic Scales of Convection on Non-Isothermal Evaporation of a Thin Liquid Layer, Sci. Rep., 2018, vol. 8, p. 11521.ADSCrossRef
26.
Zurück zum Zitat Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., et al., Influence of Relative Air Humidity on Evaporation of Water–Ethanol Solution Droplets, Colloid. J., 2021, vol. 83, pp. 277–283.CrossRef Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., et al., Influence of Relative Air Humidity on Evaporation of Water–Ethanol Solution Droplets, Colloid. J., 2021, vol. 83, pp. 277–283.CrossRef
27.
Zurück zum Zitat Hu, H. and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in in Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.CrossRef Hu, H. and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in in Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.CrossRef
28.
Zurück zum Zitat Misyura, S.Ya., Nucleate Boiling in Bidistillate Droplets, Int. J. Heat Mass Transfer, 2014, vol. 71, pp. 197–205.CrossRef Misyura, S.Ya., Nucleate Boiling in Bidistillate Droplets, Int. J. Heat Mass Transfer, 2014, vol. 71, pp. 197–205.CrossRef
29.
Zurück zum Zitat Misyura, S.Y., Bilsky, A.V., Morozov, V.S., Gobyzov, O.A., and Ryabov, M.N., Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall, J. Eng. Therm., 2021, vol. 30, pp. 654–660.CrossRef Misyura, S.Y., Bilsky, A.V., Morozov, V.S., Gobyzov, O.A., and Ryabov, M.N., Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall, J. Eng. Therm., 2021, vol. 30, pp. 654–660.CrossRef
30.
Zurück zum Zitat Hu, H. and Larson, R.G., Marangoni Effect Reverses Coffee-Ring Depositions, J. Phys. Chem. B., 2006, vol. 110, pp. 7090–7094.CrossRef Hu, H. and Larson, R.G., Marangoni Effect Reverses Coffee-Ring Depositions, J. Phys. Chem. B., 2006, vol. 110, pp. 7090–7094.CrossRef
31.
Zurück zum Zitat Misyura, S.Y. and Morozov, V.S., Influence of Air Velocity on Non-Isothermal Decay and Combustion of Gas Hydrate, J. Eng. Therm., 2021, vol. 30, pp. 374–382.CrossRef Misyura, S.Y. and Morozov, V.S., Influence of Air Velocity on Non-Isothermal Decay and Combustion of Gas Hydrate, J. Eng. Therm., 2021, vol. 30, pp. 374–382.CrossRef
32.
Zurück zum Zitat Misyura, S.Ya., Morozov, V.S., and Gobyzov, O.A., Convection in Water Droplet in the Presence of External Air Motion, J. Eng. Therm., 2020, vol. 29, pp. 443–450.CrossRef Misyura, S.Ya., Morozov, V.S., and Gobyzov, O.A., Convection in Water Droplet in the Presence of External Air Motion, J. Eng. Therm., 2020, vol. 29, pp. 443–450.CrossRef
33.
Zurück zum Zitat Gogonin, I.I. and Misyura, S.Ya., Film Heat Exchangers: Hydrodynamics and Heat Transfer (Review), J. Eng. Therm., 2020, vol. 29, pp. 686–710.CrossRef Gogonin, I.I. and Misyura, S.Ya., Film Heat Exchangers: Hydrodynamics and Heat Transfer (Review), J. Eng. Therm., 2020, vol. 29, pp. 686–710.CrossRef
34.
Zurück zum Zitat Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.CrossRef Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.CrossRef
35.
Zurück zum Zitat Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transfer to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.CrossRef Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transfer to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.CrossRef
36.
Zurück zum Zitat Misyura, S.Y., High Temperature Nonisothermal Desorption in a Water-Salt Droplet, Int. J. Therm. Sci., 2015, vol. 92, pp. 34–43.CrossRef Misyura, S.Y., High Temperature Nonisothermal Desorption in a Water-Salt Droplet, Int. J. Therm. Sci., 2015, vol. 92, pp. 34–43.CrossRef
37.
Zurück zum Zitat Girard, F., Antoni, M., and Sefiane, K., On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops, Langmuir, 2008, vol. 24, pp. 9207–9210.CrossRef Girard, F., Antoni, M., and Sefiane, K., On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops, Langmuir, 2008, vol. 24, pp. 9207–9210.CrossRef
38.
Zurück zum Zitat Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids Surf. A, 2019, vol. 572, pp. 37–46.CrossRef Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids Surf. A, 2019, vol. 572, pp. 37–46.CrossRef
39.
Zurück zum Zitat Nepomnyashyi, A.A., Simanovskii, I.B., and Braverman, L.M., Stability of Thermocapillary Flows with Inclined Temperature Gradient, J. Fluid Mech., 2001, vol. 442, pp. 141–155.ADSMATHCrossRef Nepomnyashyi, A.A., Simanovskii, I.B., and Braverman, L.M., Stability of Thermocapillary Flows with Inclined Temperature Gradient, J. Fluid Mech., 2001, vol. 442, pp. 141–155.ADSMATHCrossRef
40.
Zurück zum Zitat Misyura, S.Y., Manakov, A.Y., Morozov, V.S., Nyashina, G.S., Gaidukova, O.S., Skiba, S.S., Volkov, R.S., and Voytkov, I.S., The Influence of Key Parameters on Combustion of Double Gas Hydrate, J. Natural Gas Sci. Engin., 2020, vol. 80, p. 103396.CrossRef Misyura, S.Y., Manakov, A.Y., Morozov, V.S., Nyashina, G.S., Gaidukova, O.S., Skiba, S.S., Volkov, R.S., and Voytkov, I.S., The Influence of Key Parameters on Combustion of Double Gas Hydrate, J. Natural Gas Sci. Engin., 2020, vol. 80, p. 103396.CrossRef
41.
Zurück zum Zitat Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.CrossRef Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.CrossRef
42.
Zurück zum Zitat Misyura, S.Y., Developing the Environmentally Friendly Technologies of Combustion of Gas Hydrates. Reducing Harmful Emissions during Combustion, Environ. Pollut., 2020, vol. 265, p. 114871.CrossRef Misyura, S.Y., Developing the Environmentally Friendly Technologies of Combustion of Gas Hydrates. Reducing Harmful Emissions during Combustion, Environ. Pollut., 2020, vol. 265, p. 114871.CrossRef
43.
Zurück zum Zitat Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of Heat Transfer Theory), Moscow: Atomizdat, 1979. Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of Heat Transfer Theory), Moscow: Atomizdat, 1979.
Metadaten
Titel
Evaporation of Water Droplet on Heated Textured Wall at Various Contact Angles
verfasst von
S. Ya. Misyura
Publikationsdatum
01.09.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 3/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822030043

Weitere Artikel der Ausgabe 3/2022

Journal of Engineering Thermophysics 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.