Skip to main content

2024 | OriginalPaper | Buchkapitel

17. Evolutionary Algorithms for Fair Machine Learning

verfasst von : Alex Freitas, James Brookhouse

Erschienen in: Handbook of Evolutionary Machine Learning

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At present, supervised machine learning algorithms are ubiquitously used to learn predictive models that have a major impact on people’s lives. However, the vast majority of such algorithms were developed to optimise predictive accuracy only, ignoring the issue of fairness in the predictions of the learned models. This often leads to unfair predictive models, since real-world data usually contains bias or prejudices against certain groups of individuals (e.g. some gender or race). Hence, an increasingly important research area involves fairness-aware machine learning algorithms, i.e. algorithms that optimise both the predictive accuracy and the fairness of their learned predictive models, from a multi-objective optimisation perspective. In this chapter, we review fairness-aware Evolutionary Algorithms (EAs) for supervised machine learning. We first briefly provide some background concepts on fairness measures and multi-objective optimisation approaches. Then, we review six EAs for fairness-aware machine learning, which are in general based on multi-objective optimisation principles. The reviewed EAs address a variety of supervised machine learning tasks, namely: three EAs address a data pre-processing task for classification (one addressing feature construction and two addressing feature selection); one EA optimises the hyper-parameters of a base classification algorithm; one EA evolves an ensemble of artificial neural network models; and one EA finds fair counterfactuals. We conclude with a summary of the main findings of this review and some suggested future research directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: there’s software used across the country to predict future criminals, and it’s biased against blacks (2016) Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: there’s software used across the country to predict future criminals, and it’s biased against blacks (2016)
2.
Zurück zum Zitat Binns, R.: Fairness in machine learning: lessons from political philosophy. J. Mach. Learn. Res. 81, 1–11 (2018) Binns, R.: Fairness in machine learning: lessons from political philosophy. J. Mach. Learn. Res. 81, 1–11 (2018)
3.
Zurück zum Zitat Brookhouse, J., Freitas, A.A.: Fair feature selection with a lexicographic multi-objective genetic algorithm. In: Proceedings of the 2022 Parallel Problem Solving from Nature Conference (PPSN 2022), LNCS 13399, pp. 151–163. Springer (2022) Brookhouse, J., Freitas, A.A.: Fair feature selection with a lexicographic multi-objective genetic algorithm. In: Proceedings of the 2022 Parallel Problem Solving from Nature Conference (PPSN 2022), LNCS 13399, pp. 151–163. Springer (2022)
4.
Zurück zum Zitat Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Proceedings of Machine Learning Research: Conference on Fairness, Accountability and Transparency, vol. 81, pp. 1–15 (2018) Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Proceedings of Machine Learning Research: Conference on Fairness, Accountability and Transparency, vol. 81, pp. 1–15 (2018)
5.
Zurück zum Zitat Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Mach. Learn. Res. 70, 245–317 (2021)MathSciNetMATH Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Mach. Learn. Res. 70, 245–317 (2021)MathSciNetMATH
6.
Zurück zum Zitat Calders, T., Verwer, S.: Three naive bayes approaches for discrimination-free classification. Data Min. Knowl. Disc. 21(2), 277–292 (2010)MathSciNetCrossRef Calders, T., Verwer, S.: Three naive bayes approaches for discrimination-free classification. Data Min. Knowl. Disc. 21(2), 277–292 (2010)MathSciNetCrossRef
7.
Zurück zum Zitat Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)CrossRef Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)CrossRef
8.
Zurück zum Zitat Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical review of fair machine learning (2018). arXiv:1808.00023 Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical review of fair machine learning (2018). arXiv:​1808.​00023
9.
Zurück zum Zitat Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Proceedings of PPSN 2020 (Parallel Problem Solving from Nature Conference), LNCS 12269, pp. 448–469. Springer (2020) Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Proceedings of PPSN 2020 (Parallel Problem Solving from Nature Conference), LNCS 12269, pp. 448–469. Springer (2020)
10.
Zurück zum Zitat Dandl, S., Pfisterer, F., Bischl, B.: Multi-objective counterfactual fairness. In: Proceedings of the GECCO’22 Companion (Genetic and Evolutionary Computation Conference), pp. 328–331. ACM Press (2022) Dandl, S., Pfisterer, F., Bischl, B.: Multi-objective counterfactual fairness. In: Proceedings of the GECCO’22 Companion (Genetic and Evolutionary Computation Conference), pp. 328–331. ACM Press (2022)
11.
Zurück zum Zitat Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley (2002) Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley (2002)
12.
Zurück zum Zitat Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
13.
Zurück zum Zitat Dua, D., Graff, C.: UCI machine learning repository (2017) Dua, D., Graff, C.: UCI machine learning repository (2017)
14.
Zurück zum Zitat Fernandez-Delgado, M., Cernadas, E., Barro, S., Amorin, D.: Do we need hundreds of classifiers to solve real-world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)MathSciNetMATH Fernandez-Delgado, M., Cernadas, E., Barro, S., Amorin, D.: Do we need hundreds of classifiers to solve real-world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)MathSciNetMATH
15.
Zurück zum Zitat Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer (2002) Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer (2002)
16.
Zurück zum Zitat Freitas, A.A.: A critical review of multi-objective optimization in data mining: a position paper. ACM SIGKDD Explor. Newsl. 6(2), 77–86 (2004) Freitas, A.A.: A critical review of multi-objective optimization in data mining: a position paper. ACM SIGKDD Explor. Newsl. 6(2), 77–86 (2004)
17.
Zurück zum Zitat Haas, C.: The price of fairness–a framework to explore trade-offs in algorithmic fairness. In: Proceedings of the 40th International Conference on Information Systems (ICIS) (2019) Haas, C.: The price of fairness–a framework to explore trade-offs in algorithmic fairness. In: Proceedings of the 40th International Conference on Information Systems (ICIS) (2019)
18.
Zurück zum Zitat Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems, pp. 3315–3323 (2016) Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems, pp. 3315–3323 (2016)
19.
Zurück zum Zitat Helmuth, T., Pantridge, E., Spector, L.: Lexicase selection of specialists. In: Proceedings Genetic and Evolutionary Computation Conference (GECCO-2019), pp. 1030–1038. ACM Press (2019) Helmuth, T., Pantridge, E., Spector, L.: Lexicase selection of specialists. In: Proceedings Genetic and Evolutionary Computation Conference (GECCO-2019), pp. 1030–1038. ACM Press (2019)
20.
Zurück zum Zitat Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: Proceedings of the 2019 ACM Conference on Fairness, Accountability and Transparency (FAT), pp. 100–109. ACM (2019) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: Proceedings of the 2019 ACM Conference on Fairness, Accountability and Transparency (FAT), pp. 100–109. ACM (2019)
21.
Zurück zum Zitat Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 100–109 (2019) Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup fairness for machine learning. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 100–109 (2019)
22.
Zurück zum Zitat Kenfack, P.J., Khan, A.M., Kazmi, S.A., Hussain, R., Oracevic, A., Khattak, A.M.: Impact of model ensemble on the fairness of classifiers in machine learning. In: Proceedings of the 2021 International Conference on Applied Artificial Intelligence (ICAPAI), pp. 1–6. IEEE (2021) Kenfack, P.J., Khan, A.M., Kazmi, S.A., Hussain, R., Oracevic, A., Khattak, A.M.: Impact of model ensemble on the fairness of classifiers in machine learning. In: Proceedings of the 2021 International Conference on Applied Artificial Intelligence (ICAPAI), pp. 1–6. IEEE (2021)
23.
Zurück zum Zitat Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores (2016). arXiv:1609.05807 Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores (2016). arXiv:​1609.​05807
24.
Zurück zum Zitat Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances on Neural Information Processing Systems, vol. 30 (2017) Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances on Neural Information Processing Systems, vol. 30 (2017)
25.
Zurück zum Zitat Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems, pp. 4066–4076 (2017) Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems, pp. 4066–4076 (2017)
26.
Zurück zum Zitat La Cava, W., Moore, J.H.: Genetic programming approaches to learning fair classifiers. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO-2020), pp. 967–975 (2020) La Cava, W., Moore, J.H.: Genetic programming approaches to learning fair classifiers. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO-2020), pp. 967–975 (2020)
27.
Zurück zum Zitat La Cava, W., Singh, T.R., Taggart, J.P., Suri, S., Moore, J.H.: Learning concise representations for regression by evolving networks of trees. In: Proceedings of the International Conference on Learning Representations (ICLR 2019), 25 Mar 2019, p. 16 (2019). arXiv:1807.00981v3 [cs.NE] La Cava, W., Singh, T.R., Taggart, J.P., Suri, S., Moore, J.H.: Learning concise representations for regression by evolving networks of trees. In: Proceedings of the International Conference on Learning Representations (ICLR 2019), 25 Mar 2019, p. 16 (2019). arXiv:​1807.​00981v3 [cs.NE]
28.
Zurück zum Zitat Li, B., Tang, K., Li, J., Yao, X.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evol. Comput. 20(6), 924–938 (2016)CrossRef Li, B., Tang, K., Li, J., Yao, X.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evol. Comput. 20(6), 924–938 (2016)CrossRef
29.
Zurück zum Zitat Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 94:1–94:45 (2017) Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 94:1–94:45 (2017)
30.
Zurück zum Zitat Lipton, Z., McAuley, J., Chouldechova, A.: Does mitigating ml’s impact disparity require treatment disparity? Advances in Neural Information Processing Systems, vol. 31 (2018) Lipton, Z., McAuley, J., Chouldechova, A.: Does mitigating ml’s impact disparity require treatment disparity? Advances in Neural Information Processing Systems, vol. 31 (2018)
31.
Zurück zum Zitat Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning (2019). arXiv:1908.09635 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning (2019). arXiv:​1908.​09635
32.
Zurück zum Zitat Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., Weinberger, K.Q.: On fairness and calibration. In: Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017) (2017) Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., Weinberger, K.Q.: On fairness and calibration. In: Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017) (2017)
33.
Zurück zum Zitat Quadrianto, N., Sharmanska, V.: Recycling privileged learning and distributed matching for fairness. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 677–688 (2017) Quadrianto, N., Sharmanska, V.: Recycling privileged learning and distributed matching for fairness. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 677–688 (2017)
34.
Zurück zum Zitat Rehman, A.U., Nadeem, A., Malik, M.Z.: Fair feature subset selection using multiobjective genetic algorithm. In: Proceedings of the GECCO-22 Companion (Genetic and Evolutionary Computation Conference), pp. 360–363. ACM Press (2022) Rehman, A.U., Nadeem, A., Malik, M.Z.: Fair feature subset selection using multiobjective genetic algorithm. In: Proceedings of the GECCO-22 Companion (Genetic and Evolutionary Computation Conference), pp. 360–363. ACM Press (2022)
35.
Zurück zum Zitat Skeem, J.L., Lowenkamp, C.T.: Risk, race, & recidivism: predictive bias and disparate impact. Criminology 54, 680 (2016) Skeem, J.L., Lowenkamp, C.T.: Risk, race, & recidivism: predictive bias and disparate impact. Criminology 54, 680 (2016)
36.
Zurück zum Zitat Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRef Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRef
37.
Zurück zum Zitat Telikani, A., Tahmassebi, A., Banzhaf, W., Gandomi, A.H.: Evolutionary machine learning: a survey. ACM Comput. Surv. 54(8), 161:1–161:35 (2021) Telikani, A., Tahmassebi, A., Banzhaf, W., Gandomi, A.H.: Evolutionary machine learning: a survey. ACM Comput. Surv. 54(8), 161:1–161:35 (2021)
38.
Zurück zum Zitat Tian, Y., Si, L., Zhang, X., Cheng, R., He, C., Tan, K.C., Jin, Y.: Evolutionary large-scale multi-objective optimization: a survey. ACM Comput. Surv. 54(8), 174:1–174:34 (2021) Tian, Y., Si, L., Zhang, X., Cheng, R., He, C., Tan, K.C., Jin, Y.: Evolutionary large-scale multi-objective optimization: a survey. ACM Comput. Surv. 54(8), 174:1–174:34 (2021)
39.
Zurück zum Zitat Valdivia, A., Sanchez-Monedero, J., Casillas, J.: How fair can we go in machine learning? assessing the boundaries of accuracy and fairness. Int. J. Intell. Syst. 36(4), 1619–1643 (2021)CrossRef Valdivia, A., Sanchez-Monedero, J., Casillas, J.: How fair can we go in machine learning? assessing the boundaries of accuracy and fairness. Int. J. Intell. Syst. 36(4), 1619–1643 (2021)CrossRef
40.
Zurück zum Zitat Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), pp. 1–7. IEEE (2018) Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), pp. 1–7. IEEE (2018)
41.
Zurück zum Zitat Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools, 4th edn. Morgan Kaufmann (2016) Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools, 4th edn. Morgan Kaufmann (2016)
42.
Zurück zum Zitat Wu, H., Ma, C., Mitra, B., Diaz, F., Liu, X.: A multi-objective optimization framework for multi-stakeholder fairness-aware recommendation. ACM Trans. Inf. Syst. 41(2) (2022) Wu, H., Ma, C., Mitra, B., Diaz, F., Liu, X.: A multi-objective optimization framework for multi-stakeholder fairness-aware recommendation. ACM Trans. Inf. Syst. 41(2) (2022)
43.
Zurück zum Zitat Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: International Conference on Machine Learning, pp. 325–333 (2013) Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: International Conference on Machine Learning, pp. 325–333 (2013)
44.
Zurück zum Zitat Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-of-the-art classification algorithms. Expert. Syst. 82, 128–150 (2017)CrossRef Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-of-the-art classification algorithms. Expert. Syst. 82, 128–150 (2017)CrossRef
46.
Zurück zum Zitat Zoller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)MathSciNetCrossRefMATH Zoller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)MathSciNetCrossRefMATH
Metadaten
Titel
Evolutionary Algorithms for Fair Machine Learning
verfasst von
Alex Freitas
James Brookhouse
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3814-8_17

Premium Partner