2007 | OriginalPaper | Buchkapitel
Exact Analysis of Wave Motions in Rods and Hollow Cylinders
verfasst von : Erasmo Viola, Alessandro Marzani
Erschienen in: Mechanical Vibration: Where do we Stand?
Verlag: Springer Vienna
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
In a deformable isotropic infinitely long cylinder a discrete number of propagating guided modes regularly exists in a limited interval of frequency (
f
) and wavenumber (ξ). The calculation of the guided modes is best done via Helmholtz’s method, where the Bessel functions are used to scale the scalar and wave potentials. Solving the three-dimensional wave equations, leads to displacement and stress componenets in terms of potential to be found. By imposing the stress free boundary conditions for the inner and outer surface of the cylinder, the dispersion equation can be obtained. The dispersion equation shows how the phase velocity,
c
p
= 2π
f
/ξ, change with the frequency. The group velocity, i.e. the speed of the propagating guided modes along the cylinder, can be obtained as
c
g
= ∂(2π
f
)/∂ξ.