Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials

verfasst von : Mithilesh Singh, Nidhi Handa, Shivani Singhal

Erschienen in: Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a new method has been developed for solving the mixed second kind Volterra–Fredholm integral equations numerically. A method is introduced in this paper is known as the Bernoulli matrix method. It is applied for solving mixed VFIE’s integral equations. The one property of this method is that it reduces the degree of the problem for solving a structure of algebraic equations. Our proposed method is introduced and it is applied to convert the integral equation into the algebraic equation using of Bernoulli matrix equation. Finally, there are some numerical results that have been given for illustrating the efficiency and exactness of this method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.K. Borzabadi, A.V. Kamyad, H.H. Mehne, A different approach for solving the nonlinear Fredholm integral equations of the second kind. Appl. Math. Comput. 173, 724–735 (2006)MathSciNetMATH A.K. Borzabadi, A.V. Kamyad, H.H. Mehne, A different approach for solving the nonlinear Fredholm integral equations of the second kind. Appl. Math. Comput. 173, 724–735 (2006)MathSciNetMATH
2.
Zurück zum Zitat E. Babolian, F. Fattahzadeh, E. Golpar Raboky, A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 189, 641–646 (2007)MathSciNetCrossRef E. Babolian, F. Fattahzadeh, E. Golpar Raboky, A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 189, 641–646 (2007)MathSciNetCrossRef
3.
Zurück zum Zitat R.P. Agarwal, Boundary value problems for higher order integro-differential equations. Nonlin. Anal. Theory Methods Appl. 9, 259–270 (1983)MathSciNetCrossRef R.P. Agarwal, Boundary value problems for higher order integro-differential equations. Nonlin. Anal. Theory Methods Appl. 9, 259–270 (1983)MathSciNetCrossRef
4.
Zurück zum Zitat S. Youse, M. Razzaghi, Legendre wavelet method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 70, 1–8 (2005)MathSciNetCrossRef S. Youse, M. Razzaghi, Legendre wavelet method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 70, 1–8 (2005)MathSciNetCrossRef
5.
Zurück zum Zitat A.M. Wazwaz, “Linear and Nonlinear Integral Equations”: Methods and Applications (Springer, Saint Xavier University Chicago, USA, 2011)CrossRef A.M. Wazwaz, “Linear and Nonlinear Integral Equations”: Methods and Applications (Springer, Saint Xavier University Chicago, USA, 2011)CrossRef
6.
Zurück zum Zitat K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations. Comput. Math Appl. 37, 18 (1999)MathSciNetCrossRef K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations. Comput. Math Appl. 37, 18 (1999)MathSciNetCrossRef
7.
Zurück zum Zitat F. Mirzaee , E. Hadadiyan, Numerical Solution of Volterra–Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 280, 110–123 (2016)MathSciNetCrossRef F. Mirzaee , E. Hadadiyan, Numerical Solution of Volterra–Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 280, 110–123 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat J.P. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations. Numer. Math. 56, 409–424 (1989)MathSciNetCrossRef J.P. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations. Numer. Math. 56, 409–424 (1989)MathSciNetCrossRef
9.
Zurück zum Zitat E. Yusufoglu, E. Erbas, Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules. Kybernetes 37(6), 768–785 (2008)MathSciNetCrossRef E. Yusufoglu, E. Erbas, Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules. Kybernetes 37(6), 768–785 (2008)MathSciNetCrossRef
10.
Zurück zum Zitat M.A. Abdou, F.A. Salama, Volterra-Fredholm integral equation of the first kind and spectral relationships. J. Appl. Math. Comput. 153, 141–153 (2004)MathSciNetCrossRef M.A. Abdou, F.A. Salama, Volterra-Fredholm integral equation of the first kind and spectral relationships. J. Appl. Math. Comput. 153, 141–153 (2004)MathSciNetCrossRef
11.
Zurück zum Zitat S.J. Majeed, H.H. Omran, Numerical methods for solving linear Volterra-Fredholm integral equations. J. Al-Nahrain Univ. 11(3), 131–134 (2008)CrossRef S.J. Majeed, H.H. Omran, Numerical methods for solving linear Volterra-Fredholm integral equations. J. Al-Nahrain Univ. 11(3), 131–134 (2008)CrossRef
12.
Zurück zum Zitat J.A. Al-A’asam, Deriving the composite Simpson rule by using Bernstein polynomials for solving Volterra integral equations. Baghdad Sci. J. 11(3) (2014) J.A. Al-A’asam, Deriving the composite Simpson rule by using Bernstein polynomials for solving Volterra integral equations. Baghdad Sci. J. 11(3) (2014)
13.
Zurück zum Zitat Y. Al-Jarrah, E.B. Lin, Numerical solution of Fredholm-Volterra integral equations by using scaling function interpolation method. Appl. Math. 4, 204–209 (2013)CrossRef Y. Al-Jarrah, E.B. Lin, Numerical solution of Fredholm-Volterra integral equations by using scaling function interpolation method. Appl. Math. 4, 204–209 (2013)CrossRef
14.
Zurück zum Zitat L. Hącia, Computational methods for Volterra-Fredholm integral equations. Comput. Methods Sci. Technol. 8(2), 13–26 (2002)CrossRef L. Hącia, Computational methods for Volterra-Fredholm integral equations. Comput. Methods Sci. Technol. 8(2), 13–26 (2002)CrossRef
15.
Zurück zum Zitat F. Mohammadi, A Chebyshev wavelet operational method for solving stochastic Volterra-Fredholm integral equations. Int. J. Appl. Math. Res. 4(2), 217–227 (2015)CrossRef F. Mohammadi, A Chebyshev wavelet operational method for solving stochastic Volterra-Fredholm integral equations. Int. J. Appl. Math. Res. 4(2), 217–227 (2015)CrossRef
16.
Zurück zum Zitat M.M. Mustafa, I.N. Ghanim, Numerical solution of linear Volterra-Fredholm integral equations using lagrange polynomials. Math. Theor. Model. 4(5) (2014) M.M. Mustafa, I.N. Ghanim, Numerical solution of linear Volterra-Fredholm integral equations using lagrange polynomials. Math. Theor. Model. 4(5) (2014)
17.
Zurück zum Zitat M.K. Shahooth, Numerical solution for solving mixed Volterra-Fredholm integral equations of second kind by using. Bernstein Polynomials AIP Adv. 7, 125123 (2017)CrossRef M.K. Shahooth, Numerical solution for solving mixed Volterra-Fredholm integral equations of second kind by using. Bernstein Polynomials AIP Adv. 7, 125123 (2017)CrossRef
18.
Zurück zum Zitat J. Bernoulli, Ars conjectandi, Basel, (1713), posthumously published, p. 97 J. Bernoulli, Ars conjectandi, Basel, (1713), posthumously published, p. 97
19.
Zurück zum Zitat L. Euler, Methodus generalis summandi progressiones. Comment. Acad. Sci. Petrop. 6(1738) L. Euler, Methodus generalis summandi progressiones. Comment. Acad. Sci. Petrop. 6(1738)
20.
Zurück zum Zitat P.E. Appell, Sur une classe de polynomes. Annales d’ecole normale superieur,s. 2, 9 (1882) P.E. Appell, Sur une classe de polynomes. Annales d’ecole normale superieur,s. 2, 9 (1882)
21.
Zurück zum Zitat E. Lucas, Th´eorie des Nombres, Paris (1891) (Chapter 1) E. Lucas, Th´eorie des Nombres, Paris (1891) (Chapter 1)
23.
Zurück zum Zitat E. Tohidi, A.H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 37(6), 4283–4294 (2013)MathSciNetCrossRef E. Tohidi, A.H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 37(6), 4283–4294 (2013)MathSciNetCrossRef
24.
Zurück zum Zitat F. Toutounian, E. Tohidi, A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis. Appl. Math. Comput. 223, 298–310 (2013)MathSciNetMATH F. Toutounian, E. Tohidi, A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis. Appl. Math. Comput. 223, 298–310 (2013)MathSciNetMATH
25.
Zurück zum Zitat F.A. Costabile, F. Dell’ Accio, Expansions over a rectangle of real functions in Bernoulli polynomials and applications. BIT Numer. Math. 41, 451–464 (2001) F.A. Costabile, F. Dell’ Accio, Expansions over a rectangle of real functions in Bernoulli polynomials and applications. BIT Numer. Math. 41, 451–464 (2001)
26.
Zurück zum Zitat P. Natalini, A. Bernaridini, A generalization of the Bernoulli polynomials. J. Appl. Math. 3, 155–163 (2003)MathSciNetCrossRef P. Natalini, A. Bernaridini, A generalization of the Bernoulli polynomials. J. Appl. Math. 3, 155–163 (2003)MathSciNetCrossRef
27.
Zurück zum Zitat S. Bazam, Bernoulli polynomials for the numerical solution of same classes of linear and non-linear integral equations. J. Comput. Appl. Math. (2014) S. Bazam, Bernoulli polynomials for the numerical solution of same classes of linear and non-linear integral equations. J. Comput. Appl. Math. (2014)
Metadaten
Titel
Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials
verfasst von
Mithilesh Singh
Nidhi Handa
Shivani Singhal
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1157-8_1