Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2024

01.03.2024

Exact traveling wave solutions of (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation using extended trial equation method and modified auxiliary equation method

verfasst von: Ghazala Akram, Maasoomah Sadaf, Saima Arshed, Rimsha Latif, Mustafa Inc, Ahmed S. M. Alzaidi

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation appears in the mathematical description of physical phenomena in plasma physics, fluid dynamics and nonlinear optics. In this article, extended trial and modified auxiliary equation methods are utilized to observe the dynamical structures exhibiting the solitary wave behavior of the considered model. The traveling wave hypothesis is employed to extract explicit closed-form solution expressions. The presented methods show reliability and robust computational capabilities to investigate solitary waves. In order to investigate the physical behavior of these solutions, 3D, 2D and density plots are drawn for different values of parameters. The graphical observations depict kink soliton, dark–bright singular soliton and periodic wave solutions. The comparison of the outcomes of the proposed results with those obtained using prior techniques is made to confirm the usefulness of the proposed techniques. The presented study will be helpful to explain the wave propagation in many problems of plasma physics and fluid dynamics. Moreover, the reported solutions may help to understand optical wave transmission and aid in the development of optical devices. The results given in this study will contribute in the understanding of the behavior of waves in the higher-dimensional governing models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbagari, S., Houwe, A., Akinyemi, L., Saliou, Y., Bouetou, T.B.: Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain. Chaos Solitons Fractals 160, 112255 (2022)MathSciNetCrossRef Abbagari, S., Houwe, A., Akinyemi, L., Saliou, Y., Bouetou, T.B.: Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain. Chaos Solitons Fractals 160, 112255 (2022)MathSciNetCrossRef
Zurück zum Zitat Ahmad, H., Alam, M.N., Omri, M.: New computational results for a prototype of an excitable system. Results Phys. 28, 104666 (2021)CrossRef Ahmad, H., Alam, M.N., Omri, M.: New computational results for a prototype of an excitable system. Results Phys. 28, 104666 (2021)CrossRef
Zurück zum Zitat Ahmad, H., Khan, T.A., Stanimirovic, P.S., Shatanawi, W., Botmart, T.: New approach on conventional solutions to nonlinear partial differential equations describing physical phenomena. Results Phys. 41, 105936 (2022)CrossRef Ahmad, H., Khan, T.A., Stanimirovic, P.S., Shatanawi, W., Botmart, T.: New approach on conventional solutions to nonlinear partial differential equations describing physical phenomena. Results Phys. 41, 105936 (2022)CrossRef
Zurück zum Zitat Akinyemi, L., Mirzazadeh, M., Hosseini, K.: Solitons and other solutions of perturbed nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index. Nonlinear Anal. Model. Control 27, 479–495 (2022)MathSciNet Akinyemi, L., Mirzazadeh, M., Hosseini, K.: Solitons and other solutions of perturbed nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index. Nonlinear Anal. Model. Control 27, 479–495 (2022)MathSciNet
Zurück zum Zitat Akram, G., Sadaf, M., Zainab, I.: Observations of fractional effects of \(\beta\)-derivative and M-truncated derivative for space time fractional Phi-4 equation via two analytical techniques. Chaos Solitons Fractals 154, 111645 (2022)MathSciNetCrossRef Akram, G., Sadaf, M., Zainab, I.: Observations of fractional effects of \(\beta\)-derivative and M-truncated derivative for space time fractional Phi-4 equation via two analytical techniques. Chaos Solitons Fractals 154, 111645 (2022)MathSciNetCrossRef
Zurück zum Zitat Akram, G., Sadaf, M., Khan, M.A.U.: Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 206, 1–20 (2023)CrossRef Akram, G., Sadaf, M., Khan, M.A.U.: Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 206, 1–20 (2023)CrossRef
Zurück zum Zitat Ali, K.K., Yilmazer, R., Osman, M.S.: Extended Calogero–Bogoyavlenskii–Schiff equation and its dynamical behaviors. Phys. Scr. 96, 125249 (2021)ADSCrossRef Ali, K.K., Yilmazer, R., Osman, M.S.: Extended Calogero–Bogoyavlenskii–Schiff equation and its dynamical behaviors. Phys. Scr. 96, 125249 (2021)ADSCrossRef
Zurück zum Zitat Arshed, S., Raza, N., Alansari, M.: Soliton solutions of the generalized Davey–Stewartson equation with full nonlinearities via three integrating schemes. Ain Shams Eng. J. 12, 3091–3098 (2021)CrossRef Arshed, S., Raza, N., Alansari, M.: Soliton solutions of the generalized Davey–Stewartson equation with full nonlinearities via three integrating schemes. Ain Shams Eng. J. 12, 3091–3098 (2021)CrossRef
Zurück zum Zitat Asjad, M.I., Faridi, W.A., Alhazmi, S.E., Hussanan, A.: The modulation instability analysis and generalized fractional propagating patterns of the Peyrard–Bishop DNA dynamical equation. Opt. Quantum Electron. 55, 232 (2023)CrossRef Asjad, M.I., Faridi, W.A., Alhazmi, S.E., Hussanan, A.: The modulation instability analysis and generalized fractional propagating patterns of the Peyrard–Bishop DNA dynamical equation. Opt. Quantum Electron. 55, 232 (2023)CrossRef
Zurück zum Zitat Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Opt. Int. J. Light Electron Opt. 127, 7250–7257 (2016)CrossRef Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Opt. Int. J. Light Electron Opt. 127, 7250–7257 (2016)CrossRef
Zurück zum Zitat Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Opt. Int. J. Light Electron Opt. 160, 24–32 (2018)CrossRef Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Opt. Int. J. Light Electron Opt. 160, 24–32 (2018)CrossRef
Zurück zum Zitat Chen, Q., Ma, W.X., Huang, Y.: Study of lump solutions to an extended Calogero–Bogoyavlenskii–Schiff equation involving three fourth-order terms. Phys. Scr. 95, 095207 (2020)ADSCrossRef Chen, Q., Ma, W.X., Huang, Y.: Study of lump solutions to an extended Calogero–Bogoyavlenskii–Schiff equation involving three fourth-order terms. Phys. Scr. 95, 095207 (2020)ADSCrossRef
Zurück zum Zitat Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized \((3+1)\)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)CrossRef Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized \((3+1)\)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)CrossRef
Zurück zum Zitat Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)MathSciNetCrossRef Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)MathSciNetCrossRef
Zurück zum Zitat Feng, L.L., Zhang, T.T.: Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl. Math. Lett. 78, 133–140 (2018)MathSciNetCrossRef Feng, L.L., Zhang, T.T.: Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl. Math. Lett. 78, 133–140 (2018)MathSciNetCrossRef
Zurück zum Zitat Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers and lumps of a \((3+1)\)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135, 272 (2020)CrossRef Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers and lumps of a \((3+1)\)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135, 272 (2020)CrossRef
Zurück zum Zitat Hafez, M.G., Alam, M.N., Akbar, M.A.: Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ. Sci. 27, 105–112 (2015)CrossRef Hafez, M.G., Alam, M.N., Akbar, M.A.: Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ. Sci. 27, 105–112 (2015)CrossRef
Zurück zum Zitat Hassan, M., Abdel-Razek, M., Shoreh, A.H.: New exact solutions of some \((2+1)\)-dimensional nonlinear evolution equations via extended Kudryashov method. Rep. Math. Phys. 74, 347–358 (2014)ADSMathSciNetCrossRef Hassan, M., Abdel-Razek, M., Shoreh, A.H.: New exact solutions of some \((2+1)\)-dimensional nonlinear evolution equations via extended Kudryashov method. Rep. Math. Phys. 74, 347–358 (2014)ADSMathSciNetCrossRef
Zurück zum Zitat Hoque, M., Akbar, M.A.: New extended \((G^{\prime }/G)\)-expansion method for traveling wave solutions of nonlinear partial differential equations (NPDEs) in mathematical physics. Ital. J. Pure Appl. Math. 33, 175–190 (2014)MathSciNet Hoque, M., Akbar, M.A.: New extended \((G^{\prime }/G)\)-expansion method for traveling wave solutions of nonlinear partial differential equations (NPDEs) in mathematical physics. Ital. J. Pure Appl. Math. 33, 175–190 (2014)MathSciNet
Zurück zum Zitat Islam, S.R.: Application of an enhanced \((G^{\prime }/G)\)-expansion method to find exact solutions of nonlinear PDEs in particle physics. Am. J. Appl. Sci. 12, 836 (2015)CrossRef Islam, S.R.: Application of an enhanced \((G^{\prime }/G)\)-expansion method to find exact solutions of nonlinear PDEs in particle physics. Am. J. Appl. Sci. 12, 836 (2015)CrossRef
Zurück zum Zitat Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Results Phys. 49, 106520 (2023)CrossRef Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Results Phys. 49, 106520 (2023)CrossRef
Zurück zum Zitat Kedziora, D., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223, 43–62 (2014)CrossRef Kedziora, D., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223, 43–62 (2014)CrossRef
Zurück zum Zitat Khalique, C.M., Maefo, K.: A study on the (2+1)-dimensional first extended Calogero–Bogoyavlenskii–Schiff equation. Math. Biosci. Eng. 18, 5816–5835 (2021)MathSciNetPubMedCrossRef Khalique, C.M., Maefo, K.: A study on the (2+1)-dimensional first extended Calogero–Bogoyavlenskii–Schiff equation. Math. Biosci. Eng. 18, 5816–5835 (2021)MathSciNetPubMedCrossRef
Zurück zum Zitat Khater, M., Lu, D., Attia, R.A.M.: Dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method. AIP Adv. 9 (2019) Khater, M., Lu, D., Attia, R.A.M.: Dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method. AIP Adv. 9 (2019)
Zurück zum Zitat Kumar, S., Dhiman, S.K., Chauhan, A.: Symmetry reductions, generalized solutions and dynamics of wave profiles for the \((2+1)\)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations. Math. Comput. Simul. 196, 319–335 (2022)MathSciNetCrossRef Kumar, S., Dhiman, S.K., Chauhan, A.: Symmetry reductions, generalized solutions and dynamics of wave profiles for the \((2+1)\)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations. Math. Comput. Simul. 196, 319–335 (2022)MathSciNetCrossRef
Zurück zum Zitat Kumar, S., Niwas, M., Dhiman, S.K.: Abundant analytical soliton solutions and different wave profiles to the Kudryashov–Sinelshchikov equation in mathematical physics. J. Ocean Eng. Sci. 7, 565–577 (2022)CrossRef Kumar, S., Niwas, M., Dhiman, S.K.: Abundant analytical soliton solutions and different wave profiles to the Kudryashov–Sinelshchikov equation in mathematical physics. J. Ocean Eng. Sci. 7, 565–577 (2022)CrossRef
Zurück zum Zitat Kumar, S., Ma, W.X., Dhiman, S.K., Chauhan, A.: Lie group analysis with the optimal system, generalized invariant solutions, and an enormous variety of different wave profiles for the higher-dimensional modified dispersive water wave system of equations. Eur. Phys. J. Plus 138, 434 (2023)CrossRef Kumar, S., Ma, W.X., Dhiman, S.K., Chauhan, A.: Lie group analysis with the optimal system, generalized invariant solutions, and an enormous variety of different wave profiles for the higher-dimensional modified dispersive water wave system of equations. Eur. Phys. J. Plus 138, 434 (2023)CrossRef
Zurück zum Zitat Kumar, S., Kumar Dhiman, S., Chauhan, A.: Analysis of lie invariance, analytical solutions, conservation laws, and a variety of wave profiles for the \((2+1)\)-dimensional Riemann wave model arising from ocean tsunamis and seismic sea waves. Eur. Phys. J. Plus 138, 622 (2023)CrossRef Kumar, S., Kumar Dhiman, S., Chauhan, A.: Analysis of lie invariance, analytical solutions, conservation laws, and a variety of wave profiles for the \((2+1)\)-dimensional Riemann wave model arising from ocean tsunamis and seismic sea waves. Eur. Phys. J. Plus 138, 622 (2023)CrossRef
Zurück zum Zitat Ma, W.X., Wu, H., He, J.: Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A 364, 29–32 (2007)ADSMathSciNetCrossRef Ma, W.X., Wu, H., He, J.: Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A 364, 29–32 (2007)ADSMathSciNetCrossRef
Zurück zum Zitat Mabrouk, S., Rashed, A.: N-solitons, kink and periodic wave solutions for \((3+ 1)\)-dimensional Hirota bilinear equation using three distinct techniques. Chin. J. Phys. 60, 48–60 (2019)MathSciNetCrossRef Mabrouk, S., Rashed, A.: N-solitons, kink and periodic wave solutions for \((3+ 1)\)-dimensional Hirota bilinear equation using three distinct techniques. Chin. J. Phys. 60, 48–60 (2019)MathSciNetCrossRef
Zurück zum Zitat Majid, S.Z., Faridi, W.A., Asjad, M.I., Abd El-Rahman, M., Eldin, S.M.: Explicit soliton structure formation for the Riemann Wave equation and a sensitive demonstration. Fractal Fract. 7, 102 (2023)CrossRef Majid, S.Z., Faridi, W.A., Asjad, M.I., Abd El-Rahman, M., Eldin, S.M.: Explicit soliton structure formation for the Riemann Wave equation and a sensitive demonstration. Fractal Fract. 7, 102 (2023)CrossRef
Zurück zum Zitat Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a \((2+1)\)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)MathSciNetCrossRef Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a \((2+1)\)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)MathSciNetCrossRef
Zurück zum Zitat Nasreen, N., Rafiq, M.N., Younas, U., Lu, D.: Sensitivity analysis and solitary wave solutions to the \((2+1)\)-dimensional Boussinesq equation in dispersive media. Mod. Phys. Lett. B 2350227 (2023) Nasreen, N., Rafiq, M.N., Younas, U., Lu, D.: Sensitivity analysis and solitary wave solutions to the \((2+1)\)-dimensional Boussinesq equation in dispersive media. Mod. Phys. Lett. B 2350227 (2023)
Zurück zum Zitat Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled by coupled space–time fractional dynamical system. Alex. Eng. J. 73, 173–187 (2023)CrossRef Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled by coupled space–time fractional dynamical system. Alex. Eng. J. 73, 173–187 (2023)CrossRef
Zurück zum Zitat Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.A.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quantum Electron. 55, 868 (2023)CrossRef Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.A.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quantum Electron. 55, 868 (2023)CrossRef
Zurück zum Zitat Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023)CrossRef Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023)CrossRef
Zurück zum Zitat Pandir, Y., Gurefe, Y., Misirli, E.: The extended trial equation method for some time fractional differential equations. Discrete Dyn. Nat. Soc. 2013 (2013) Pandir, Y., Gurefe, Y., Misirli, E.: The extended trial equation method for some time fractional differential equations. Discrete Dyn. Nat. Soc. 2013 (2013)
Zurück zum Zitat Peng, Y.Z.: New types of localized coherent structures in the Bogoyavlenskii–Schiff equation. Int. J. Theor. Phys. 45, 1764–1768 (2006)MathSciNetCrossRef Peng, Y.Z.: New types of localized coherent structures in the Bogoyavlenskii–Schiff equation. Int. J. Theor. Phys. 45, 1764–1768 (2006)MathSciNetCrossRef
Zurück zum Zitat Raza, N., Hassan, Z., Gómez-Aguilar, J.: Extraction of new super-Gaussian solitons via collective variables. Opt. Quantum Electron. 53, 468 (2021)CrossRef Raza, N., Hassan, Z., Gómez-Aguilar, J.: Extraction of new super-Gaussian solitons via collective variables. Opt. Quantum Electron. 53, 468 (2021)CrossRef
Zurück zum Zitat Rezazadeh, H.: New solitons solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity. Opt. Int. J. Light Electron Opt. 167, 218–227 (2018)CrossRef Rezazadeh, H.: New solitons solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity. Opt. Int. J. Light Electron Opt. 167, 218–227 (2018)CrossRef
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., Ali, K.: Einstein’s vacuum field equation: lumps, manifold periodic, generalized breathers, interactions and rogue wave solutions. Opt. Quantum Electron. 55, 181 (2023a)CrossRef Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., Ali, K.: Einstein’s vacuum field equation: lumps, manifold periodic, generalized breathers, interactions and rogue wave solutions. Opt. Quantum Electron. 55, 181 (2023a)CrossRef
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Naqvi, S.K., Abbas, S.O.: Study of mixed derivative nonlinear Schrödinger equation for rogue and lump waves, breathers and their interaction solutions with Kerr law. Opt. Quantum Electron. 55, 177 (2023b)CrossRef Rizvi, S.T.R., Seadawy, A.R., Naqvi, S.K., Abbas, S.O.: Study of mixed derivative nonlinear Schrödinger equation for rogue and lump waves, breathers and their interaction solutions with Kerr law. Opt. Quantum Electron. 55, 177 (2023b)CrossRef
Zurück zum Zitat Roshid, M., Bashar, H.: Breather wave and kinky periodic wave solutions of one-dimensional Oskolkov equation. Math. Model. Eng. Probl. 6, 460–466 (2019)CrossRef Roshid, M., Bashar, H.: Breather wave and kinky periodic wave solutions of one-dimensional Oskolkov equation. Math. Model. Eng. Probl. 6, 460–466 (2019)CrossRef
Zurück zum Zitat Schiff, J.: Integrability of Chern–Simons–Higgs vortex equations and a reduction of the self-dual Yang–Mills equations to three dimensions. Painlevé Transcend. Asymptot. Phys. Appl. 278, 393–405 (1992)MathSciNetCrossRef Schiff, J.: Integrability of Chern–Simons–Higgs vortex equations and a reduction of the self-dual Yang–Mills equations to three dimensions. Painlevé Transcend. Asymptot. Phys. Appl. 278, 393–405 (1992)MathSciNetCrossRef
Zurück zum Zitat Seadawy, A.R., Rizvi, S.T.R., Nimra: A study of breather lump wave, rogue wave, periodic cross kink wave, multi-wave, M-shaped rational and their interactions for generalized nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 2350049 (2023) Seadawy, A.R., Rizvi, S.T.R., Nimra: A study of breather lump wave, rogue wave, periodic cross kink wave, multi-wave, M-shaped rational and their interactions for generalized nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 2350049 (2023)
Zurück zum Zitat Seadawy, A.R., Nasreen, N., Lu, D.: Complex model ultra-short pulses in optical fibers via generalized third-order nonlinear Schrödinger dynamical equation. Int. J. Mod. Phys. B 34, 2050143 (2020)ADSCrossRef Seadawy, A.R., Nasreen, N., Lu, D.: Complex model ultra-short pulses in optical fibers via generalized third-order nonlinear Schrödinger dynamical equation. Int. J. Mod. Phys. B 34, 2050143 (2020)ADSCrossRef
Zurück zum Zitat Shen, Y., Tian, B., Zhang, C.R., Tian, H.Y., Liu, S.H.: Breather-wave, periodic-wave and traveling-wave solutions for a \((2+1)\)-dimensional extended Boiti–Leon–Manna–Pempinelli equation for an incompressible fluid. Mod. Phys. Lett. B 35, 2150261 (2021)ADSMathSciNetCrossRef Shen, Y., Tian, B., Zhang, C.R., Tian, H.Y., Liu, S.H.: Breather-wave, periodic-wave and traveling-wave solutions for a \((2+1)\)-dimensional extended Boiti–Leon–Manna–Pempinelli equation for an incompressible fluid. Mod. Phys. Lett. B 35, 2150261 (2021)ADSMathSciNetCrossRef
Zurück zum Zitat Shen, Y., Tian, B., Zhou, T.Y.: In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff system. Eur. Phys. J. Plus 136, 572 (2021)CrossRef Shen, Y., Tian, B., Zhou, T.Y.: In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff system. Eur. Phys. J. Plus 136, 572 (2021)CrossRef
Zurück zum Zitat Sulaiman, T.A., Yusuf, A., Atangana, A.: New lump, lump-kink, breather waves and other interaction solutions to the \((3+1)\)-dimensional soliton equation. Commun. Theor. Phys. 72, 085004 (2020)ADSMathSciNetCrossRef Sulaiman, T.A., Yusuf, A., Atangana, A.: New lump, lump-kink, breather waves and other interaction solutions to the \((3+1)\)-dimensional soliton equation. Commun. Theor. Phys. 72, 085004 (2020)ADSMathSciNetCrossRef
Zurück zum Zitat Tahami, M., Najafi, M.: Multi-wave solutions for the generalized \((2+ 1)\)-dimensional nonlinear evolution equations. Opt. Int. J. Light Electron Opt. 136, 228–236 (2017)CrossRef Tahami, M., Najafi, M.: Multi-wave solutions for the generalized \((2+ 1)\)-dimensional nonlinear evolution equations. Opt. Int. J. Light Electron Opt. 136, 228–236 (2017)CrossRef
Zurück zum Zitat Toda, K., Song-Ju, Y., Fukuyama, T.: The Bogoyavlenskii–Schiff hierarchy and integrable equations in \((2+1)\) dimensions. Rep. Math. Phys. 44, 247–254 (1999)ADSMathSciNetCrossRef Toda, K., Song-Ju, Y., Fukuyama, T.: The Bogoyavlenskii–Schiff hierarchy and integrable equations in \((2+1)\) dimensions. Rep. Math. Phys. 44, 247–254 (1999)ADSMathSciNetCrossRef
Zurück zum Zitat Tripathy, A., Sahoo, S.: A novel analytical method for solving (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation in plasma physics. J. Ocean Eng. Sci. 6, 405–409 (2021)CrossRef Tripathy, A., Sahoo, S.: A novel analytical method for solving (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation in plasma physics. J. Ocean Eng. Sci. 6, 405–409 (2021)CrossRef
Zurück zum Zitat Wazwaz, A.M.: A study on two extensions of the Bogoyavlenskii–Schieff equation. Commun. Nonlinear Sci. Numer. Simul. 17, 1500–1505 (2012)ADSMathSciNetCrossRef Wazwaz, A.M.: A study on two extensions of the Bogoyavlenskii–Schieff equation. Commun. Nonlinear Sci. Numer. Simul. 17, 1500–1505 (2012)ADSMathSciNetCrossRef
Zurück zum Zitat Wazwaz, A.M.: Abundant solutions of various physical features for the \((2+ 1)\)-dimensional modified KdV–Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)MathSciNetCrossRef Wazwaz, A.M.: Abundant solutions of various physical features for the \((2+ 1)\)-dimensional modified KdV–Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)MathSciNetCrossRef
Zurück zum Zitat Xu, S., He, J.: The rogue wave and breather solution of the Gerdjikov–Ivanov equation. J. Math. Phys. 53, 063507 (2012)ADSMathSciNetCrossRef Xu, S., He, J.: The rogue wave and breather solution of the Gerdjikov–Ivanov equation. J. Math. Phys. 53, 063507 (2012)ADSMathSciNetCrossRef
Zurück zum Zitat Yamgoué, S.B., Deffo, G.R., Pelap, F.B.: A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics. Eur. Phys. J. Plus 134, 380 (2019)CrossRef Yamgoué, S.B., Deffo, G.R., Pelap, F.B.: A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics. Eur. Phys. J. Plus 134, 380 (2019)CrossRef
Zurück zum Zitat Yu, S.J., Toda, K., Fukuyama, T.: N-soliton solutions to a-dimensional integrable equation. J. Phys. A Math. Gen. 31, 10181 (1998)ADSMathSciNetCrossRef Yu, S.J., Toda, K., Fukuyama, T.: N-soliton solutions to a-dimensional integrable equation. J. Phys. A Math. Gen. 31, 10181 (1998)ADSMathSciNetCrossRef
Metadaten
Titel
Exact traveling wave solutions of (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation using extended trial equation method and modified auxiliary equation method
verfasst von
Ghazala Akram
Maasoomah Sadaf
Saima Arshed
Rimsha Latif
Mustafa Inc
Ahmed S. M. Alzaidi
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05900-8

Weitere Artikel der Ausgabe 3/2024

Optical and Quantum Electronics 3/2024 Zur Ausgabe

Neuer Inhalt