Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 5/2016

21.01.2016 | Original Paper

Exergy efficiency improvement in hydrogen production process by recovery of chemical energy versus thermal energy

verfasst von: Sonal K. Thengane, Andrew Hoadley, Sankar Bhattacharya, Sagar Mitra, Santanu Bandyopadhyay

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exergy analysis is recently being employed as one of the preferred methods to improve the design performance of a system and to achieve overall sustainability. Exergy is mainly composed of physical or thermo-mechanical and chemical components and a single stream can possess one or more forms of exergy. Where there is exergy lost in unused chemical streams or wasted energy, the recovery of exergy would reduce losses and increase the second law efficiency of the process. In many chemical process plants such as hydrogen (H2), ammonia, nitric acid, etc., there is a potential to recover waste or excess heat by process heat exchange or by generating utilities. For a process like steam–methane (CH4) reforming (SMR), exergy efficiency can be improved by recovering the available excess heat partially or fully in the form of chemical energy or thermal energy. This paper presents the generalised system analysis to show that the recovery of exergy in the form of chemical energy is better than in thermal energy form due to fewer losses and higher efficiency. The concept is illustrated with the example of a simple combustion system with excess heat in which saving fuel proves to be more exergy efficient than generating utility. The approach is applied to an industrial case study of H2-producing SMR plant with two modified cases of steam generation and recycling portion of unconverted CH4 as feed. In the case study, heat exchanger network is treated as a separate process component and a simple methodology is proposed to calculate the exergy losses for the same. The results of the case study prove that the recovery of chemical energy is more efficient than that of thermal energy from an exergy perspective.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bandyopadhyay S, Sahu GC (2010) Modified problem table algorithm for energy targeting. Ind Eng Chem Res 49:11557–11563CrossRef Bandyopadhyay S, Sahu GC (2010) Modified problem table algorithm for energy targeting. Ind Eng Chem Res 49:11557–11563CrossRef
Zurück zum Zitat Bejan A (1988) Advanced engineering thermodynamics. Wiley, New York Bejan A (1988) Advanced engineering thermodynamics. Wiley, New York
Zurück zum Zitat Bejan A (2002) Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int J Energy Res 26:545–565 Bejan A (2002) Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int J Energy Res 26:545–565
Zurück zum Zitat Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G (2011) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 36:2202–2214CrossRef Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G (2011) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 36:2202–2214CrossRef
Zurück zum Zitat Chen B, Liao Z, Wang J, Yu H, Yang Y (2012) Exergy analysis and CO2 emission evaluation for steam methane reforming. Int J Hydrogen Energy 37:3191–3200CrossRef Chen B, Liao Z, Wang J, Yu H, Yang Y (2012) Exergy analysis and CO2 emission evaluation for steam methane reforming. Int J Hydrogen Energy 37:3191–3200CrossRef
Zurück zum Zitat de Oliveira S (2013) Exergy, exergy costing, and renewability analysis of energy conversion processes. Springer, LondonCrossRef de Oliveira S (2013) Exergy, exergy costing, and renewability analysis of energy conversion processes. Springer, LondonCrossRef
Zurück zum Zitat Dunbar WR, Lior N (1994) Sources of combustion irreversibility. Combust Sci Technol 103:41–61CrossRef Dunbar WR, Lior N (1994) Sources of combustion irreversibility. Combust Sci Technol 103:41–61CrossRef
Zurück zum Zitat Hajjaji N, Pons M, Houas A, Renaudin V (2012) Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process. Energy Policy 42:392–399CrossRef Hajjaji N, Pons M, Houas A, Renaudin V (2012) Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process. Energy Policy 42:392–399CrossRef
Zurück zum Zitat Hajjaji N, Chahbani A, Khila Z, Pons MN (2014) A comprehensive energy–exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming. Energy 64:473–483CrossRef Hajjaji N, Chahbani A, Khila Z, Pons MN (2014) A comprehensive energy–exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming. Energy 64:473–483CrossRef
Zurück zum Zitat Hepbasli A (2008) A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev 12:593–661CrossRef Hepbasli A (2008) A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev 12:593–661CrossRef
Zurück zum Zitat Janalizadeh H, Khoshgoftar Manesh MH, Amidpour M (2014) Exergoeconomic and exergoenvironmental evaluation of integration of desalinations with a total site utility system. Clean Technol Environ Policy 17:103–117CrossRef Janalizadeh H, Khoshgoftar Manesh MH, Amidpour M (2014) Exergoeconomic and exergoenvironmental evaluation of integration of desalinations with a total site utility system. Clean Technol Environ Policy 17:103–117CrossRef
Zurück zum Zitat Koroneos C, Rovas D (2012) A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 5:6640–6651CrossRef Koroneos C, Rovas D (2012) A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 5:6640–6651CrossRef
Zurück zum Zitat Koroneos C, Spachos T, Moussiopoulos N (2003) Exergy analysis of renewable energy sources. Renew Energy 28:295–310CrossRef Koroneos C, Spachos T, Moussiopoulos N (2003) Exergy analysis of renewable energy sources. Renew Energy 28:295–310CrossRef
Zurück zum Zitat Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publishing Company, Malabar Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publishing Company, Malabar
Zurück zum Zitat Navid P, Manesh MHK, Marigorta AMB (2014) Optimal design of cogeneration system based on exergoenvironmental analysis. Clean Technol Environ Policy 16:1045–1065CrossRef Navid P, Manesh MHK, Marigorta AMB (2014) Optimal design of cogeneration system based on exergoenvironmental analysis. Clean Technol Environ Policy 16:1045–1065CrossRef
Zurück zum Zitat Peng XD (2012) Analysis of the thermal efficiency limit of the steam methane reforming process. Ind Eng Chem Res 51:16385–16392CrossRef Peng XD (2012) Analysis of the thermal efficiency limit of the steam methane reforming process. Ind Eng Chem Res 51:16385–16392CrossRef
Zurück zum Zitat Ranjan KR, Kaushik SC (2014) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805CrossRef Ranjan KR, Kaushik SC (2014) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805CrossRef
Zurück zum Zitat Simpson AP, Lutz AE (2007) Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 32:4811–4820CrossRef Simpson AP, Lutz AE (2007) Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 32:4811–4820CrossRef
Zurück zum Zitat Siva Reddy V, Kaushik SC, Tyagi SK (2014) Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Clean Technol Environ Policy 16:489–499CrossRef Siva Reddy V, Kaushik SC, Tyagi SK (2014) Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Clean Technol Environ Policy 16:489–499CrossRef
Zurück zum Zitat Tsatsaronis G, Cziesla F (2004) Exergy analysis of simple processes. In: Frangopoulosaylo CA (ed) Exergy, energy system analysis and optimization. Encyclopedia of life support systems, vol 1. EOLSS Publishers, Oxford, pp 79–107 Tsatsaronis G, Cziesla F (2004) Exergy analysis of simple processes. In: Frangopoulosaylo CA (ed) Exergy, energy system analysis and optimization. Encyclopedia of life support systems, vol 1. EOLSS Publishers, Oxford, pp 79–107
Zurück zum Zitat Wang X, Jin B (2009) Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng 107:138–144CrossRef Wang X, Jin B (2009) Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng 107:138–144CrossRef
Zurück zum Zitat Wu Z, Zhou S, An L (2011) The second law (exergy) analysis of hydrogen. J Sustain Dev 4:260–263CrossRef Wu Z, Zhou S, An L (2011) The second law (exergy) analysis of hydrogen. J Sustain Dev 4:260–263CrossRef
Metadaten
Titel
Exergy efficiency improvement in hydrogen production process by recovery of chemical energy versus thermal energy
verfasst von
Sonal K. Thengane
Andrew Hoadley
Sankar Bhattacharya
Sagar Mitra
Santanu Bandyopadhyay
Publikationsdatum
21.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 5/2016
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-016-1094-2

Weitere Artikel der Ausgabe 5/2016

Clean Technologies and Environmental Policy 5/2016 Zur Ausgabe