Skip to main content

2016 | OriginalPaper | Buchkapitel

Existence and Region of Critical Probabilities in Bootstrap Percolation on Inhomogeneous Periodic Trees

verfasst von : Milan Bradonjić, Stephan Wagner

Erschienen in: Algorithms and Models for the Web Graph

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bootstrap percolation is a growth model inspired by cellular automata. At the initial time \(t=0\), the bootstrap percolation process starts from an initial random configuration of active vertices on a given graph, and proceeds deterministically so that a node becomes active at time \(t=1,2,\dots \) if sufficiently many of its neighbors are already active at the previous time \(t-1\). In the most basic model, all vertices have the same initial probability of being active in the initial configuration. One of the main questions is to determine the percolation threshold (if it exists) with the property that all nodes in the given graph become active asymptotically almost surely (a.a.s.) for the initial probability above this threshold, while this is not the case below the threshold. In this work, we study a scenario where the nodes do not all receive the same probabilities, but to keep the problem tractable, we impose conditions on the shape of the graph and the initial probabilities. Specifically, we consider infinite periodic trees, in which the degrees and initial probabilities of nodes on a path from the root node are periodic, with a given periodicity. Instead of the simple percolation threshold, we now obtain an entire region of possible probabilities for which all nodes in the tree become a.a.s. active. We show: (i) that the unit cube, as the support of the initial probabilities, can be partitioned into two regions, denoted by \(W_0\) and \(\overline{W}_0\), such that the tree becomes (does not become) a.a.s. fully active for any initial probability vector that belongs to \(\overline{W}_0\) (resp. \(W_0\)); (ii) for every node in the tree, we provide the probability that the node becomes eventually active, for any initial probability vector that belongs to \(W_0\); (iii) further, we specify the boundary of \(W_0\) and show how it can be numerically computed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A: Math. Gen. 21(19), 3801–3813 (1988)MathSciNetCrossRefMATH Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A: Math. Gen. 21(19), 3801–3813 (1988)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Comb. 17, 1–20 (2010). #R25MathSciNetMATH Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Comb. 17, 1–20 (2010). #R25MathSciNetMATH
3.
Zurück zum Zitat Amini, H., Fountoulakis, N.: What I tell you three times is true: bootstrap percolation in small worlds. In: Proceedings of Internet and Network Economics - 8th International Workshop, WINE 2012, Liverpool, UK, 10–12 December 2012, pp. 462–474 (2012) Amini, H., Fountoulakis, N.: What I tell you three times is true: bootstrap percolation in small worlds. In: Proceedings of Internet and Network Economics - 8th International Workshop, WINE 2012, Liverpool, UK, 10–12 December 2012, pp. 462–474 (2012)
4.
6.
Zurück zum Zitat Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701 (2012)MathSciNetCrossRefMATH Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701 (2012)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hypercube. Comb. Probab. Comput. 18(1–2), 17–51 (2009)MathSciNetCrossRefMATH Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hypercube. Comb. Probab. Comput. 18(1–2), 17–51 (2009)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions. Comb. Probab. Comput. 19(5–6), 643–692 (2010)MathSciNetCrossRefMATH Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions. Comb. Probab. Comput. 19(5–6), 643–692 (2010)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Comb. Probab. Comput. 15(5), 715–730 (2006)MathSciNetCrossRefMATH Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Comb. Probab. Comput. 15(5), 715–730 (2006)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)MathSciNetCrossRefMATH Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Biskup, M., Schonmann, R.H.: Metastable behavior for bootstrap percolation on regular trees. J. Stat. Phys. 136(4), 667–676 (2009)MathSciNetCrossRefMATH Biskup, M., Schonmann, R.H.: Metastable behavior for bootstrap percolation on regular trees. J. Stat. Phys. 136(4), 667–676 (2009)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Bollobás, B., Gunderson, K., Holmgren, C., Janson, S., Przykucki, M.: Bootstrap percolation on Galton-Watson trees. Electron. J. Probab. 19(13), 1–27 (2014)MathSciNetMATH Bollobás, B., Gunderson, K., Holmgren, C., Janson, S., Przykucki, M.: Bootstrap percolation on Galton-Watson trees. Electron. J. Probab. 19(13), 1–27 (2014)MathSciNetMATH
13.
14.
Zurück zum Zitat Bradonjić, M., Saniee, I.: Bootstrap percolation on periodic trees. In: Proceedings of 12th Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2015, San Diego, CA, USA, 4 January 2015, pp. 89–96 (2015) Bradonjić, M., Saniee, I.: Bootstrap percolation on periodic trees. In: Proceedings of 12th Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2015, San Diego, CA, USA, 4 January 2015, pp. 89–96 (2015)
15.
Zurück zum Zitat Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C 12, L31 (1979)CrossRef Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C 12, L31 (1979)CrossRef
16.
Zurück zum Zitat Duminil-Copin, H., Van Enter, A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Probab. 41(3A), 1218–1242 (2013)MathSciNetCrossRefMATH Duminil-Copin, H., Van Enter, A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Probab. 41(3A), 1218–1242 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Fontes, L., Schonmann, R.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132(5), 839–861 (2008)MathSciNetCrossRefMATH Fontes, L., Schonmann, R.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132(5), 839–861 (2008)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Gravner, J., Holroyd, A.E., Morris, R.: A sharper threshold for bootstrap percolation in two dimensions. Probab. Theor. Relat. Fields 153(1–2), 1–23 (2012)MathSciNetCrossRefMATH Gravner, J., Holroyd, A.E., Morris, R.: A sharper threshold for bootstrap percolation in two dimensions. Probab. Theor. Relat. Fields 153(1–2), 1–23 (2012)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theor. Relat. Fields 125, 195–224 (2003)MathSciNetCrossRefMATH Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theor. Relat. Fields 125, 195–224 (2003)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Janson, S., Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(G_{n, p}\). Ann. Appl. Probab 22(5), 1989–2047 (2012)MathSciNetCrossRefMATH Janson, S., Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(G_{n, p}\). Ann. Appl. Probab 22(5), 1989–2047 (2012)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Schonmann, R.: Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58(5–6), 1239–1244 (1990)MathSciNetCrossRefMATH Schonmann, R.: Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58(5–6), 1239–1244 (1990)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20(1), 174–193 (1992)MathSciNetCrossRefMATH Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20(1), 174–193 (1992)MathSciNetCrossRefMATH
23.
Zurück zum Zitat van Enter, A., Adler, J., Duarte, J.: Finite-size effects for some bootstrap percolation models. J. Stat. Phys. 60(3–4), 323–332 (1990)MathSciNetCrossRef van Enter, A., Adler, J., Duarte, J.: Finite-size effects for some bootstrap percolation models. J. Stat. Phys. 60(3–4), 323–332 (1990)MathSciNetCrossRef
24.
Zurück zum Zitat van Enter, A., Fey, A.: Metastability thresholds for anisotropic bootstrap percolation in three dimensions. J. Stat. Phys. 147(1), 97–112 (2012)MathSciNetCrossRefMATH van Enter, A., Fey, A.: Metastability thresholds for anisotropic bootstrap percolation in three dimensions. J. Stat. Phys. 147(1), 97–112 (2012)MathSciNetCrossRefMATH
25.
Zurück zum Zitat van Enter, A., Hulshof, T.: Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections. J. Stat. Phys. 128(6), 1383–1389 (2007)MathSciNetCrossRefMATH van Enter, A., Hulshof, T.: Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections. J. Stat. Phys. 128(6), 1383–1389 (2007)MathSciNetCrossRefMATH
Metadaten
Titel
Existence and Region of Critical Probabilities in Bootstrap Percolation on Inhomogeneous Periodic Trees
verfasst von
Milan Bradonjić
Stephan Wagner
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-49787-7_5

Premium Partner