Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

Existence of solutions for equations and inclusions of multiterm fractional q-integro-differential with nonseparated and initial boundary conditions

verfasst von: Mohammad Esmael Samei, Ghorban Khalilzadeh Ranjbar, Vahid Hedayati

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this paper is to investigate existence of solutions for the multiterm nonlinear fractional q-integro-differential \({}^{c}D_{q}^{\alpha } u(t)\) in two modes equations and inclusions of order \(\alpha\in(n -1, n]\), with non-separated boundary and initial boundary conditions where the natural number n is more than or equal to five. We consider a Carathéodory multivalued map and use Leray–Schauder and Covitz–Nadler famous fixed point theorems for finding solutions of the inclusion problems. Besides, we present results whenever the multifunctions are convex and nonconvex. Lastly, we give some examples illustrating the primary effects.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Fractional calculus and q-calculus are the significant branches in mathematical analysis. The field of fractional calculus has countless applications, and the subject of fractional differential equations ranges from the theoretical views of existence and uniqueness of solutions to the analytical and mathematical methods for finding solutions (for instance, see [14]). There has been an intensive development in fractional differential equations and inclusion (for example, see [511]). During the last two decades, the fractional differential equations and inclusions, both differential and q-differential, were developed intensively by many authors for a variety of subjects (for instance, consider [1220]). In recent years, there are many published papers about differential and integro-differential equations and inclusions which are valuable tools in the modeling of many phenomena in various fields of science (for more details, see [2132] and references therein).
In this article, motivated by [7, 21, 27], among these achievements and following results, we are working to stretch out the analytical and computational methods of checking of positive solutions for fractional q-integro-differential equation
$$ \begin{aligned}[b] {}^{c}D_{q}^{\alpha} u(t) ={}&f \bigl( t, u(t), u'(t), u''(t), u'''(t), \varphi _{1} u(t), \varphi_{2} u(t), \\ & {}^{c}D_{q}^{\beta_{11}} u(t), {}^{c}D_{q}^{\beta_{12}} u(t), \dots, {}^{c}D_{q}^{\beta_{1k_{1}}} u(t), \\ & {}^{c}D_{q}^{ \beta_{21}} u(t), {}^{c}D_{q}^{ \beta_{22}} u(t), \dots, {}^{c}D_{q}^{\beta_{2k_{2}}} u(t), \\ & {}^{c}D_{q}^{ \beta_{31}} u(t), {}^{c}D_{q}^{\beta_{32}} u(t), \dots, {}^{c}D_{q}^{ \beta_{3k_{3}}} u(t) \bigr), \end{aligned} $$
(1)
for almost all \(t \in\overline{J} = [0,\delta]\), with \(\delta> 0\), and the inclusion case
$$ \begin{aligned}[b] {}^{c}D_{q}^{\alpha} u(t) \in{}& T \bigl( t, u(t), u'(t), u''(t), u'''(t), \varphi_{1} u(t), \varphi_{2} u(t), \\ & {}^{c}D_{q}^{\beta_{11}} u(t), {}^{c}D_{q}^{\beta_{12}} u(t), \dots, {}^{c}D_{q}^{\beta_{1k_{1}}} u(t), \\ & {}^{c}D_{q}^{\beta_{21}} u(t), {}^{c}D_{q}^{\beta_{22}} u(t), \dots, {}^{c}D_{q}^{\beta_{2k_{2}}} u(t), \\ & {}^{c}D_{q}^{\beta_{31}} u(t), {}^{c}D_{q}^{ \beta_{32}} u(t), \dots, {}^{c}D_{q}^{\beta_{3k_{3}}} u(t) \bigr), \end{aligned} $$
(2)
for each \(t \in I =[0,1]\), with the initial and antiperiodic boundary conditions as follows:
$$\begin{aligned}& u^{(4)}(0) = \cdots= u^{(n-1)} (0) = 0, \end{aligned}$$
(3)
$$\begin{aligned}& a_{1} u(0) + a_{2} u( \delta) = 0, \end{aligned}$$
(4)
$$\begin{aligned}& {}^{c}D_{q}^{p_{j}} u(0) = -{}^{c}D_{q}^{p_{j}} u(\delta) \quad(j=1,2,3), \end{aligned}$$
(5)
where \({}^{c}D_{q}^{\alpha}\) denotes the Caputo fractional q-derivative, \(\alpha\in(n-1,n]\), with the natural number n more than or equal to five, \(\beta_{1j_{1}}\), \(\beta_{2j_{2}}\), \(\beta_{3j_{3}}\), in problems (1) and (2), belonging to \(J_{0}=(0,1)\), \(J_{1}=(1,2)\), \(J_{2}=(2,3)\), for \(j_{1}\in N_{k_{1}}\), \(j_{2} \in N_{k_{2}}\), \(j_{3} \in N_{k_{3}}\), respectively, with \(N_{k}=\{1, 2, \dots, k\}\), while the map \(\varphi_{i}\), in problem (1) and (2), is defined by
$$ \begin{aligned}[b] \varphi_{i} u(t) ={}& \int_{0}^{t} \mu_{i} ( t, s) \theta_{i} \bigl( t, s, u(s), u'(s), u''(s), u'''(s), \\ & {}^{c}D_{q}^{\gamma_{i1}} u(s), {}^{c}D_{q}^{\gamma_{i2}} u(s), {}^{c}D_{q}^{\gamma_{i3}} u(s) \bigr) \, ds, \end{aligned} $$
(6)
where the real-valued functions \(\mu_{i}\), \(\theta_{i}\) defined on \(\overline{J}^{2} \), \(\overline{J}^{2}\times\mathbb{R}^{7}\), respectively, are continuous, for \(i=1,2\), \(\gamma_{i1}\), \(\gamma_{i2}\), \(\gamma _{i3}\) belong to \(J_{0}\), \(J_{1}\), \(J_{2}\), respectively, a continuous function f maps \(\overline{J} \times\mathcal{R}^{m}\) to \(\mathbb{R}\), a map \(T : I \times\mathcal{R}^{m} \to P(\mathbb{R})\) is a multifunction, here \(\mathcal{R}^{m}=\mathbb{R}^{6+k_{1}+k_{2}+k_{3}}\) and \(P(\mathbb{R})= \{A \subseteq\mathbb{R} \mid A \neq\emptyset \}\), in (4), \(a_{1} + a_{2} \neq0\), and the constants \(p_{1}\), \(p_{2}\), \(p_{3} \) in (5) belong to \(J_{0}\), \(J_{1}\), \(J_{2}\), respectively.
As before, we remind some of the previous works briefly. In 1910, the subject of q-difference equations was introduced by Jackson [3335]. After that, at the beginning of the last century, studies on q-difference equations appeared in many works, especially in Carmichael [36], Mason [37], Adams [38], Trjitzinsky [39], Agarwal [40]. An excellent account in the study of fractional differential and q-differential equations can be found in [1, 3, 4143]. In 2009, Su and Zhang investigated the problem
$$ \left \{ \textstyle\begin{array}{l} {}^{c}D_{0^{+}}^{\eta} u(t) = f ( t, u(t), {}^{c}D_{0^{+}}^{\nu}u(t) ), \\ a_{1} u(0) - a_{2} u'(0) = C_{1}, \qquad b_{1} u(1) + b_{2}, u'(1) = C_{2}, \end{array}\displaystyle \right . $$
for all \(t \in(0,1)\), where \(a_{1} b_{1} + a_{1} b_{2} + a_{2}b_{1} >0\), \(\eta \in(1, 2]\), \(\nu\in(0, 1]\), for \(i=1, 2\), \({a_{i}, b_{i} \geq0}\), a continuous function f maps \(I=[0,1] \times \mathbb{R}^{2} \) to \(\mathbb{R,}\) and \({}^{c}D_{0^{+}}^{\eta}\) is the Caputo’s fractional derivative [19]. In 2011, Agarwal, O’regan and Staněk investigated the problem \({}^{c}D^{\alpha}f (x) + T (x, f(x), f'(x), {}^{c}D^{\mu}f(x) )=0\), \(f(1)= f'(0) =0\), for all \(t \in[0,1]\), where \(\mu\in(0,1)\), and as always \({}^{c}D^{\alpha}\) is the Caputo fractional derivative of order α with \(\alpha\in(1,2)\), positive function T is a scalar \(L^{\kappa}\)-Carathéodory on \(I \times E\) with \(E= (0,\infty)^{3}\) and \(\kappa(\alpha-1)> 1\), such that \(T(t, x_{1}, x_{2}, x_{3})\) may be singular at 0 in one dimension of its space variables \(x_{1}\), \(x_{2}\), and \(x_{3}\) [44]. In 2012, Ahmad et al. discussed the existence and uniqueness of solutions for the fractional q-difference equations \({}^{c}D_{q}^{\alpha}u(t)= T ( t, u(t) ) \), \(\alpha_{1} u(0) - \beta_{1} D_{q} u(0) = \gamma_{1} u(\eta_{1})\) and \(\alpha_{2} u(1) - \beta_{2} D_{q} u(1) = \gamma_{2} u(\eta_{2})\), for \(t \in I\), where \(\alpha\in(1, 2]\), \(\alpha_{i}, \beta _{i}, \gamma_{i}, \eta_{i} \in\mathbb{R}\), for \(i=1,2\) and \(T \in C([0,1] \times\mathbb{R}, \mathbb{R})\) [13].
In 2013, Baleanu, Rezapour and Mohammadi et al., by using fixed-point methods, studied the existence and uniqueness of a solution for the nonlinear fractional differential equation boundary-value problem \(D^{\alpha}u(t) = f(t,u(t))\) with a Riemann–Liouville fractional derivative via the different boundary-value conditions: \(u(0)=u(\delta )\), as well as the three-point boundary condition \(u(0) =\beta_{1} u(\eta )\) and \(u(\delta) = \beta_{2} u(\eta)\), where \(\delta>0\), \(t \in I=[0,\delta]\), \(\alpha\in(0,1)\) \(\eta\in(0, \delta)\) and \(0<\beta _{1} < \beta_{2} < 1\) [12]. In 2016, Ahmad et al. investigated solutions of the problem
$$\left \{ \textstyle\begin{array}{l} {}^{c}D_{q}^{\eta}f(x) \in F ( x, u(x), D_{q} u(x), D_{q}^{\nu}x(x) ), \\ u(0) + u(1) =0, \qquad D_{q} u(0) + D_{q} u(1) =0, \qquad D_{q}^{2} u(0) + D_{q}^{2} u(1) =0, \end{array}\displaystyle \right . $$
for each \(x \in I\), where \(\eta\in(2, 3]\), \(\nu\in[0, 3]\), \({}^{c}D_{q}^{\eta}\) denotes Caputo fractional q-derivative, \(q \in(0,1)\), and F mapping \(I \times A\) to \(\mathcal{P} (\mathbb{R}) \) is a multivalued map, here \(\mathcal{P} (\mathbb{R})\) is a power set of \(\mathbb{R}\) and \(A=\mathbb{R}^{3}\) [15]. In 2017, Baleanu, Mousalou and Rezapour presented a new method to investigate some fractional integro-differential equations involving the Caputo–Fabrizio derivative
$${}^{\mathrm{CF}}D^{\alpha}u(t) = \frac{(2-\alpha) M(\alpha)}{2 (1-\alpha)} \int _{0}^{t} \exp \biggl( \frac{\alpha}{\alpha-1} (t-s) \biggr) u'(s)\, ds, $$
where \(t\in[0,1]\), \(M(\alpha)\) is a normalization constant depending on α such that \(M(0) =M(1) = 1\), and proved the existence of approximate solutions for these problems [10]. Also in the same year, they introduced a new operator called the infinite coefficient-symmetric Caputo–Fabrizio fractional derivative and applied it to investigate the approximate solutions for two infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential problems [11]. In addition to this, Akbari and Rezapour, by using the shifted Legendre and Chebyshev polynomials, discussed the existence of solutions for a sum-type fractional integro-differential problem under the Caputo differentiation [6]. Over the past three years, Baleanu, Rezapour and many others, by using the Caputo–Fabrizio derivative, achieved innovative and remarkable results for solutions of fractional differential equations [22, 23, 25, 28, 30, 32]. In the following year, Rezapour and Hedayati investigated the existence of solutions for the inclusion \({}^{c}D^{\alpha}x(t) \in F (x, f(x), {}^{c}D^{\beta}f(x), f' (x) )\) for each \(x\in I\) with the conditions \({}^{c}D^{\beta} f(0) -\int_{0}^{\eta_{1}} f(r) \,dr= f(0) + f' (0)\) and \({}^{c}D^{\beta} f(1) - \int_{0}^{\eta_{2}} f(r) \,dr = f(1) + f' (1)\), where multifunction F maps \([0,1] \times\mathbb{R}^{3} \) to \(2^{ \mathbb {R}}\) and is compact-valued, while \({}^{c}D^{\alpha}\) is the Caputo differential operator [16]. In 2019, Samei et al. discussed the fractional hybrid q-differential inclusions \({}^{c}D_{q}^{\alpha}( x / F ( t, x, I_{q}^{\alpha_{1}} x, \dots, I_{q}^{\alpha_{n}} x ) ) \in T ( t, x, I_{q}^{\beta_{1}} x, \dots, I_{q}^{\beta_{k}} x )\), with the boundary conditions \(x(0) =x_{0}\) and \(x(1)=x_{1}\), where \(1 < \alpha\leq2\), \(q \in(0,1)\), \(x_{0}, x_{1} \in\mathbb{R}\), \(\alpha_{i} >0\), for \(i=1, 2, \ldots, n\), \(\beta_{j} > 0\), for \(j=1, 2, \ldots, k\), \(n, k\in\mathbb{N}\), \({}^{c}D_{q}^{\alpha}\) denotes Caputo type q-derivative of order α, \(I_{q}^{\beta}\) denotes Riemann–Liouville type q-integral of order β, \(F: J \times\mathbb{R}^{n} \to(0,\infty)\) is continuous, and T mapping \(J\times\mathbb{R}^{k}\) to \(P (\mathbb{R})\) is a multifunction [17].

2 Preliminaries

As before, we point out some of the fundamental facts on the fractional q-calculus which are needed in the next sections (for more information, consider [13, 33]). Then, some well-known fixed point theorems and definitions are presented.
Assume that \(q \in(0,1)\) and \(a \in\mathbb{R}\). Define \([a]_{q}=\frac {1-q^{a}}{1-q}\) and consider the power function \((a-b)_{q}^{(n)}= \prod_{k=0}^{n-1} (a - bq^{k})\) whenever \(n \in\mathbb{N}\) and \((a-b)_{q}^{(n)}=1\) where \(n=0\), and \(a, b \in\mathbb{R}\) [1, 3, 33]. Also, for \(\alpha\in \mathbb{R}\) and \(a \neq0\), we define [33]
$$(a-b)_{q}^{(\alpha)} = a^{\alpha}\prod _{k=0}^{\infty}\bigl(a-bq^{k} \bigr) / \bigl(a - bq^{\alpha+ k} \bigr). $$
If \(b=0\), then it is clear that \(a^{(\alpha)}= a^{\alpha}\) (Algorithm 1). The q-Gamma function is defined by \(\varGamma_{q}(x) = ((1-q)^{(x-1)})/((1-q)^{x -1}) \), where \(x \in\mathbb{R} \setminus\{ 0, -1, -2, \dots\}\) and satisfies \(\varGamma_{q} (x+1) = [x]_{q} \varGamma_{q} (x)\) [3, 33, 45, 46]. The value of q-Gamma function, \(\varGamma_{q}(x)\), for input values q and x will have a counting number of sentences n in summation by simplifying analysis. For this design, we prepare a pseudo-code description of the technique for estimating q-Gamma function of order n which is shown in Algorithm 2. For any positive numbers α and β, the q-Beta function is defined by [41]
$$ B_{q}(\alpha, \beta) = \int_{0}^{1} (1- qs)_{q}^{(\alpha-1)} s^{\beta-1} \, d_{q}s. $$
(7)
The q-derivative of function f is defined by \((D_{q} f)(x) = \frac {f(x) - f(qx)}{(1- q)x}\) and \((D_{q} f)(0) = \lim_{x \to0} (D_{q} f)(x)\), which is shown in Algorithm 3 [3, 38, 41]. Also, the higher order q-derivative of a function f is defined by \((D_{q}^{n} f)(x) = D_{q}(D_{q}^{n-1} f)(x)\) for all \(n \geq1\), where \((D_{q}^{0} f)(x) = f(x)\) [38, 41]. The q-integral of a function f defined in the interval \([0,b]\) is defined by \(I_{q} f(x) = \int_{0}^{x} f(s) \,d_{q} s = x(1- q) \sum_{k=0}^{\infty} q^{k} f(x q^{k})\), for \(0 \leq x \leq b\), provided that the sum converges absolutely [38, 47]. If \(a \in[0, b]\), then
$$\int_{a}^{b} f(u) \,d_{q} u = I_{q} f(b) - I_{q} f(a) = (1-q) \sum _{k=0}^{\infty} q^{k} \bigl[ b f \bigl(b q^{k} \bigr) - a f \bigl(a q^{k} \bigr) \bigr], $$
whenever the series exists. The operator \(I_{q}^{n}\) is given by \((I_{q}^{0} f)(x) = f(x) \) and \((I_{q}^{n} f)(x) = (I_{q} (I_{q}^{n-1} f)) (x) \) for all \(n \geq1\) [3, 38, 47]. It has been proved that \((D_{q} (I_{q} f))(x) = f(x) \) and \((I_{q} (D_{q} f))(x) = f(x) - f(0)\) whenever f is continuous at \(x =0\) [38, 48]. The fractional Riemann–Liouville type q-integral of the function f on \([0,1]\), of \(\alpha\geq0\) is given by \((I_{q}^{0} f)(t) = f(t) \) and
$$\bigl(I_{q}^{\alpha}f \bigr) (t) = \frac{1}{\varGamma_{q}(\alpha)} \int_{0}^{t} (t- qs)^{(\alpha- 1)} f(s) \,d_{q}s, $$
for \(t \in[0,1]\) and \(\alpha>0\) [15, 18, 45]. Also, the fractional Caputo type q-derivative of the function f is given by
$$ \begin{aligned}[b] \bigl( {}^{c}D_{q}^{\alpha}f \bigr) (t) & = \bigl( I_{q}^{[\alpha]-\alpha} \bigl( D_{q}^{[\alpha]} f \bigr) \bigr) (t) \\ & = \frac{1}{\varGamma_{q} ([\alpha]-\alpha )} \int_{0}^{t} (t- qs)^{ ([\alpha]-\alpha-1 )} \bigl( D_{q}^{[\alpha]} f \bigr) (s) \,d_{q}s, \end{aligned} $$
(8)
for \(t \in[0,1]\), \(\alpha>0\), and \([\alpha]\) denotes the smallest integer greater or equal to α [3, 15, 18, 45]. It has been proved that \(( I_{q}^{\beta} (I_{q}^{\alpha} f) ) (x) = ( I_{q}^{\alpha+ \beta} f ) (x)\) and \((D_{q}^{\alpha} (I_{q}^{\alpha} f) ) (x) = f(x)\), where \(\alpha, \beta\geq0\) [18]. By employing Algorithm 2, we can calculate \((I_{q}^{\alpha}f)(x)\); this is shown in Algorithm 4.
Let us consider a normed space \((\mathcal{X},\|\cdot\|) \). We denote the set of all nonempty subsets, all nonempty closed subsets, all nonempty bounded subsets, all nonempty compact subsets, and all nonempty compact and convex subsets of \(\mathcal{X}\), by \(P(\mathcal {X})\), \(P_{cl}( \mathcal{X})\), \(P_{b}( \mathcal{X})\), \(P_{cp}( \mathcal {X})\), and \(P_{cp,c}(\mathcal{X})\), respectively. We say that a multivalued map \(\varTheta: \mathcal{X} \to P(\mathcal{X})\) is convex(closed)-valued whenever for any \(x\in\mathcal{X}\), \(\varTheta (\mathcal{X})\) is convex (closed) [29]. If for all \(\mathcal{A} \in P_{b}(\mathcal{X})\), we have \(\varTheta(\mathcal{A}) = \bigcup_{a\in\mathcal{A}} \varTheta(a)\) is a bounded subset of \(\mathcal {X}\), then multifunction Θ is called bounded on bounded sets, where \(\sup_{a\in\mathcal{A}} \{ \sup\{|b|: b\in\varTheta(a)\} \} \) is finite [29]. We use the concepts of upper semicontinuous, compact, completely continuous for the multifunction \(\varTheta: \mathcal{X}\to P(\mathcal{X})\) as in [49, 50]. For investigating the nonlinear problem (1) and (2) under conditions (3), (4), and (5), we need the following lemma, which can be found in [51] and [52].
Lemma 1
The general solution of the fractional q-differential equation \({}^{c}D_{q}^{\alpha} u(t) =0\) is given by \(u(t) = b_{0} + b_{1} t + b_{2} t^{2} + \cdots+ b_{n-1} t^{n-1}\), for \(\alpha>0\), where \(b_{i} \in\mathbb{R}\) for \(i=N_{n-1}\) and \(n = [\alpha] + 1\).
In fact, by using Lemma 1, for the solution of the fractional q-differential equation \({}^{c}D_{q}^{\alpha} u(t) = 0\) we have \({I_{q}^{ \alpha}}{}^{c}D_{q}^{\alpha} u(t) = u(t) + b_{0} + b_{1} t + b_{2} t^{2} + \cdots+ b_{n-1}t^{n-1}\). Now, we prove the next key result.
Lemma 2
Consider the boundary value problem with the antiperiodic conditions
$$ \left \{ \textstyle\begin{array}{l} {}^{c}D_{q}^{\alpha} u(t) = v(t),\\ u^{(4)}(0) = \cdots= u^{(n-1)}(0)=0, \\ a_{1} u(0) + a_{2} u(\delta) = 0 \quad(a_{1} + a_{2} \neq0), \\ {}^{c}D_{q}^{p_{i}} u(0) = - {}^{c}D_{q}^{p_{i}} u(\delta), \quad i=1,2,3, \end{array}\displaystyle \right . $$
(9)
for \(n-1<\alpha\leq n\), with the natural number n being more than or equal to five, \(q \in(0,1)\), \(v \in L^{1} (\overline{J} , \mathbb{R} )\) and each \(t\in[0, \delta]\) with \(\delta> 0\), where \(p_{1}\), \(p_{2}\), \(p_{3}\) belong to \((0,1)\), \((1,2)\), and \((2,3)\), respectively. Then, the problem has at least one solution, namely, \(u(t) = \int_{0}^{\delta}G(t,qs) v(s) \, d_{q}s\), where
$$\begin{aligned}& G(t,qs) = \frac{1}{\varGamma_{q}(\alpha)} \biggl[ ( t - qs)^{(\alpha- 1)} - \frac{a_{2}}{a_{1} + a_{2}} (\delta-qs)^{(\alpha- 1)} \biggr] \\& \phantom{G(t,qs) =}{}+ B_{1}(t, s, \delta) - B_{2}(t, s, \delta) - B_{3}(t, s, \delta), \\& G( t, qs) = - \frac{a_{2} (\delta- qs)^{ (\alpha- 1)}}{(a_{1} + a_{2} ) \varGamma_{q} ( \alpha)} + B_{1}(t, s, \delta) - B_{2}(t, s, \delta) - B_{3}(t, s, \delta), \end{aligned}$$
whenever \(s\leq t\) or \(t\leq s\), respectively, here
$$\begin{aligned}& B_{1} (t, s, \delta) = \frac{ [a_{2} \delta- (a_{1} + a_{2}) t ] \varGamma_{q} ( 2 - p_{1}) (\delta- qs)^{( \alpha- p_{1} - 1 )} \delta^{p_{1} - 1} }{ (a_{1} + a_{2}) \varGamma_{q}(\alpha- p_{1})}, \\& B_{2} (t, s, \delta) =\frac{ \varGamma_{q}( 3 - p_{2}) (\delta- qs)^{(\alpha- p_{2} - 1)} \delta^{p_{2} -2} }{ 2 (a_{1} + a_{2})( 2 - p_{1})} \\& \phantom{B_{2} (t, s, \delta) =}{} \times \bigl[ a_{2} p_{1} \delta^{2} - ( a_{1} + a_{2}) \bigl(2 \delta t - ( 2 - p_{1}) t^{2} \bigr) \bigr], \\& B_{3} (t, s, \delta) = \frac{\varGamma_{q} ( 4 - p_{3}) (\delta- qs)^{(\alpha - p_{3} -1)}}{\varGamma_{q}(\alpha- p_{3})} \\& \phantom{B_{3} (t, s, \delta) =}{} \times \biggl[ \frac{ a_{2} [ - 6 ( p_{2} - p_{1}) + ( 2 - p_{1})( 3 - p_{1}) p_{2} ] \delta^{p_{3}} }{ 6 (a_{2} + a_{2})( 2 - p_{1})( 3 - p_{1}) (3 - p_{2}) } \\& \phantom{B_{3} (t, s, \delta) =}{}+ \frac{ [6 (p_{2} - p_{1}) \delta^{2} t + ( 2 - p_{1})( 3 - p_{1} )( - 3 \delta t^{2} + ( 3 - p_{2})t^{3})] \delta^{p_{3} - 3} }{ 6 ( 2 - p_{1})( 3 - p_{1}) (3 - p_{2})} \biggr]. \end{aligned}$$
Proof
We assume that u is one of the solutions of (9). By applying Lemma 1, there exist \(c_{i} \in\mathbb{R}\) for \(i \in N_{n-1}\) such that
$$\begin{aligned} u(t) & = I_{q}^{\alpha} v(t) - \Biggl( \sum _{i=0}^{n-1} c_{i}t^{i} \Biggr) = \frac{1}{\varGamma_{q}( \alpha) } \int_{0}^{t} (t -qs)^{(\alpha-1)} v(s)\, d_{q}s - \Biggl( \sum_{i=0}^{n-1} c_{i}t^{i} \Biggr). \end{aligned}$$
By using conditions (3) for problem (1), we obtain \(b_{4} = \cdots= b_{n-1} =0\). Since \({}^{c}D_{q}^{p_{1}} k = 0\) for all constant k, \({}^{c}D_{q}^{p_{1}} t\), \({}^{c}D_{q}^{p_{1}} t^{2}\), \({}^{c}D_{q}^{p_{1}} t^{3}\) are equal to \(\frac{ t^{ 1 - p_{1}}}{\varGamma_{q} (2 - p_{1})}\), \(\frac{2 t^{ 2 - p_{1}}}{ \varGamma_{q}( 3 - p_{1})}\), \(\frac{ 6t^{ 3 - p_{1}}}{ \varGamma_{q}( 4 - p_{1})}\), respectively, \({}^{c}D_{q}^{p_{2}} t\), \({}^{c}D_{q}^{p_{2}} t^{2}\), \({}^{c}D_{q}^{p_{2}} t^{3}\) are equal to 0, \(\frac{2 t^{ 2 - p_{1}}}{ \varGamma_{q}( 3 - p_{2})}\), \(\frac{ 6 t^{ 3 - p_{2}}}{ \varGamma_{q} ( 4 - p_{2})}\), respectively, \({}^{c}D_{q}^{p_{3}} t= {}^{c}D_{q}^{p_{3}} t^{2} =0\), \({}^{c}D_{q}^{p_{3}} t^{3} = \frac{ 6 t^{ 3 - p_{3}}}{ \varGamma_{q}( 4 - p_{3})}\) and \({}^{c}D_{q}^{p_{i}} I_{q}^{\alpha} v(t) = I_{q}^{\alpha- p_{i}} v(t)\), for \(i=1,2,3\), we get
$$\begin{aligned}& {}^{c}D_{q}^{p_{1}} u(t) = I_{q}^{\alpha- p_{1}} v(t) - c_{1} \frac{t^{1 - p_{1}}}{ \varGamma_{q}( 2 - p_{1})} - c_{2} \frac{ 2t^{ 2 -p_{1}}}{ \varGamma_{q}( 3 - p_{1})} - c_{3} \frac{ 6t^{ 3 - p_{1}}}{ \varGamma_{q} ( 4 - p_{1})}, \\& {}^{c}D_{q}^{p_{2}} u(t) = I_{q}^{ \alpha- p_{2}} v(t) - c_{2} \frac{ 2 t ^{ 2 - p_{2}}}{ \varGamma_{q}( 3 - p_{2})} - c_{3} \frac{ 6 t^{ 3 - p_{2}}}{ \varGamma_{q}( 4 - p_{2})}, \\& {}^{c}D_{q}^{ p_{3}} u(t) = I_{q}^{ \alpha- p_{3}} v(t) - c_{3} \frac{ 6 t^{ 3 -p_{3}}}{ \varGamma_{q}( 4 - p_{3})}. \end{aligned}$$
By applying conditions (4) and (5), we obtain
$$\begin{aligned}& \begin{aligned}c_{0} & = \frac{a_{2}}{(a_{1} + a_{2})} \biggl[ I_{q}^{\alpha}v(\delta) - \varGamma_{q} (2 - p_{1}) \delta^{p_{1}} I_{q}^{\alpha- p_{1}} v(\delta) \\ & \quad+ \frac{ p_{1} \varGamma_{q}( 3 - p_{2}) \delta^{p_{2}}}{ 2 ( 2 - p_{1}) } I_{q}^{\alpha- p_{2}} v(\delta) \\ & \quad+ \frac{ [ -6 ( p_{2} - p_{1}) + ( 2 - p_{1})( 3 - p_{1})p_{2}] \varGamma_{q}( 4 - p_{3}) \delta^{p_{3}}}{ 6 ( 2 - p_{1})( 3 - p_{1})( 3 - p_{2}) } I_{q}^{\alpha- p_{3}} v(\delta) \biggr], \end{aligned} \\& \begin{aligned}c_{1} & = \varGamma_{q}( 2 - p_{1}) \delta^{p_{1}-1} I_{q}^{\alpha- p_{1}} v( \delta) \,d_{q}s - \frac{ \varGamma_{q}( 3 - p_{2}) \delta^{p_{2}-1} }{ ( 2 - p_{1}) } I_{q}^{\alpha- p_{2} } v( \delta) \\ & \quad+ \frac{(p_{2} -p_{1}) \varGamma_{q}( 4 - p_{3}) \delta^{ p_{3}-1}}{( 2 - p_{1})( 3 - p_{1})( 3 - p_{2}) } I_{q}^{ \alpha- p_{3}} v(\delta), \end{aligned} \\& c_{2} = \frac{ \varGamma_{q} (3 - p_{2}) \delta^{ p_{2} - 2}}{ 2 } I_{q}^{ \alpha - p_{2}} v( \delta) - \frac{ \varGamma_{q}( 4 - p_{3}) \delta^{ p_{3} -2}}{ 2 ( 3 - p_{2}) } I_{q}^{\alpha- p_{3}} v(\delta), \\& c_{3} = \frac{ \varGamma_{q}( 4 - p_{3}) \delta^{ p_{3} -3}}{ 6 } I_{q}^{ \alpha -p_{3}} v( \delta). \end{aligned}$$
Thus, substituting the values of \(c_{i}\), for \(i \in N_{n-1}\) in condition (9), we get the unique solution of the problem. □

3 Main results

At present, we are ready, by using the above results and basic definitions, to investigate positive solutions of problems (1) and (2) with conditions (3), (4), and (5) in the subsequent two subsections. For brevity, we denote the space of all \(x \in C^{3}(\overline{J})\) by \(\mathcal{X}\). We consider the norm
$$\Vert x \Vert = \sup_{t\in\overline{J}} \bigl\vert x(t) \bigr\vert + \sup_{t\in\overline{J}} \bigl\vert x'(t) \bigr\vert + \sup_{t\in\overline{J}} \bigl\vert x''(t) \bigr\vert + \sup_{t\in\overline{J}} \bigl\vert x'''(t) \bigr\vert $$
on \(\mathcal{X}\). As we know, \((\mathcal{X}, \|\cdot\|)\) is a Banach space.

3.1 Positive solutions for problem (1)

We first give the following theorem which can be found in [26].
Theorem 3
The completely continuous operator Θ defined on a Banach space A has a fixed point in A whenever the set of all \(a \in A\) such that \(a = \lambda\varTheta(a)\) is bounded, for \(0 < \lambda<1\).
Theorem 4
The operator \(\varTheta: \mathcal{X}\to \mathcal{X}\) defined by
$$\begin{aligned} (\varTheta u) ( t ) &= I_{q}^{\alpha}\widetilde{f} \bigl(t, u(t) \bigr) - \frac{a_{2}}{(a_{1} + a_{2})} I_{q}^{\alpha}\widetilde{f} \bigl(\delta, u(\delta) \bigr) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} \widetilde{f} \bigl( \delta, u( \delta) \bigr) \\ & \quad{}- B_{2}(t, \delta) I_{q}^{\alpha- p_{2} } \widetilde{f} \bigl( \delta, u( \delta) \bigr) - B_{3}(t, \delta) I_{q}^{\alpha- p_{3} } \widetilde{f} \bigl(\delta, u(\delta) \bigr), \end{aligned}$$
is completely continuous, where
$$\begin{aligned} \widetilde{f} \bigl( s, u(s) \bigr) = {}& f \bigl( s, u(s), u'(s), u''(s), u'''(s), \varphi_{1} u(s), \varphi_{2} u(s), \\ & {}^{c}D_{q}^{\beta_{11}} u(s), {}^{c}D_{q}^{\beta_{12}} u(s), \dots, {}^{c}D_{q}^{\beta_{1k_{1}}} u(s), \\ &{}^{c}D_{q}^{\beta_{21}} u(s), {}^{c}D_{q}^{\beta_{22}} u(s), \dots, {}^{c}D_{q}^{\beta_{2k_{2}}} u(s), \\ & {}^{c}D_{q}^{\beta_{31}} u(s), {}^{c}D_{q}^{\beta_{32}} u(s), \dots, {}^{c}D_{q}^{\beta_{3k_{3}}} u(s) \bigr), \end{aligned}$$
and
$$\begin{aligned}& B_{1} (t, \delta) = \frac{[a_{2} \delta- (a_{1} + a_{2}) t ] \varGamma_{q} ( 2 - p_{1}) \delta^{p_{1} - 1} }{(a_{1} + a_{2}) }, \\& B_{2} (t, \delta) = \frac{ [ a_{2} p_{1} \delta^{2} - ( a_{1} + a_{2})(2 \delta t - ( 2 - p_{1}) t^{2})] \varGamma_{q}( 3 - p_{2}) \delta^{p_{2} -2} }{ 2 (a_{1} + a_{2})( 2 - p_{1})}, \\& \begin{aligned}B_{3}(t, \delta) & = \frac{ a_{2} [ - 6 ( p_{2} - p_{1}) + ( 2 - p_{1})( 3 - p_{1}) p_{2} ] \varGamma_{q} ( 4 - p_{3}) \delta^{p_{3}} }{ 6 (a_{2} + a_{2})( 2 - p_{1})( 3 - p_{1}) (3 - p_{2}) } \\ & \quad+\frac{\varGamma_{q} ( 4 - p_{3}) \delta^{p_{3} - 3} }{ 6 ( 2 - p_{1})( 3 - p_{1}) (3 - p_{2})} \\ & \quad\times \bigl[6 (p_{2} - p_{1}) \delta^{2} t + ( 2 - p_{1}) ( 3 - p_{1} ) \bigl( - 3 \delta t^{2} + ( 3 - p_{2})t^{3} \bigr) \bigr]. \end{aligned} \end{aligned}$$
Proof
To begin, consider a sequence \(\{ u_{n} \}\) in \(\mathcal{X}\) such that \(u_{n} \) tends to \(u_{0}\) and \(\beta_{1j} \in(0,1)\) for \(j \in N_{k_{1}}\). By using assumptions, we get
$$\begin{aligned} \sup_{t \in\overline{J} } \bigl\vert {}^{c}D_{q}^{\beta_{1j}} u_{n} (t) - {}^{c}D_{q}^{\beta_{1j}} u_{0}(t) \bigr\vert & = \sup_{t \in\overline{J}} \bigl\vert I_{q}^{ 1 - \beta_{1j}} u'_{n}(t) - I_{q}^{ 1 - \beta_{1j}} u'_{0}(t) \bigr\vert \\ &= \sup_{t \in\overline{J} } \bigl\vert I_{q}^{1- \beta_{1j} } \bigl[u'_{n}(t) - u'_{0}(t) \bigr] \bigr\vert \\ &\leq \frac{\delta^{ 1 - \beta_{1j} } }{ \varGamma_{q} (2 - \beta_{1j}) } \sup_{t\in\overline{J}} \bigl\vert u'_{n} (t) - u'_{0}(t) \bigr\vert \\ & \leq\frac{\delta^{ 1 - \beta_{1j}} }{ \varGamma_{q}( 2 - \beta_{1j } ) } \Vert u_{n} -u_{0} \Vert . \end{aligned}$$
Since \(\| u_{n} - u\| \to0\), \(\lim_{n\to\infty} {}^{c}D_{q}^{\beta_{1j}} u_{n} (t) = {}^{c}D_{q}^{\beta_{1j} } u_{0} (t)\) uniformly on . Again with the same method, we have \(\lim_{n \to\infty} {}^{c}D_{q}^{\beta_{2j} } u_{n} (t) = {}^{c}D_{q}^{\beta_{2j}} u_{0}(t)\) and
$$\lim_{ n\to\infty} {}^{c}D_{q}^{\beta_{3j}} u_{n} (t) ={}^{c}D_{q}^{\beta _{3j}} u_{0} (t), $$
uniformly on for \(j \in N_{k_{2}}\) and \(j \in N_{k_{3}}\), respectively. Also, we obtain \(\lim_{n\to\infty} {}^{c}D_{q}^{ \gamma _{i1}} u_{n} (t) = {}^{c}D_{q}^{\gamma_{i1}} u_{0} (t)\), \(\lim_{n \to \infty} {}^{c}D_{q}^{\gamma_{2i} } u_{n} (t) = {}^{c}D_{q}^{\gamma_{i2}} u_{0} (t)\), and
$$\lim_{ n \to\infty} {}^{c}D_{q}^{\gamma_{i3}} u_{n} (t) = {}^{c}D_{q}^{\gamma _{i3}} u_{0} (t), $$
uniformly on for \(i \in N_{2}\). On the other hand,
$$\begin{aligned} \Vert \varTheta u_{n} - \varTheta u_{0} \Vert & = \sup _{ t \in\overline{J}} \bigl\vert \varTheta u_{n} (t) - \varTheta u_{0} (t) \bigr\vert + \sup_{t\in\overline{J} } \bigl\vert ( \varTheta u_{n})' (t) - (\varTheta u_{0})'(t) \bigr\vert \\ & \quad+ \sup_{ t \in\overline{J}} \bigl\vert (\varTheta u_{n})'' (t) - (\varTheta u_{0})'' (t) \bigr\vert \\ & \quad+ \sup_{t\in\overline{J}} \bigl\vert (\varTheta u_{n} )'''(t) - (\varTheta u_{0} )''' (t) \bigr\vert . \end{aligned}$$
Thus, by employing the continuity of f, \(\theta_{1}\), \(\theta_{2}\), we conclude that \(\| \varTheta u_{n} -\varTheta u \| \to0\). Therefore, Θ is continuous on \(\mathcal{X}\). At present, suppose that \(\mathcal{B} \subseteq \mathcal{X}\) is bounded. So there exists \(L\in(0, \infty)\) such that \(|\widetilde{f} (t, u(t) ) | \leq L\) for each t and u belonging to and \(\mathcal{B}\), respectively. Due to the assumptions, we get
$$\begin{aligned}& \bigl\vert (\varTheta x ) (t) \bigr\vert \leq I_{q}^{\alpha}\bigl\vert \widetilde{f} \bigl(t, u(t) \bigr) \bigr\vert + \frac{ \vert a_{2} \vert }{ \vert a_{1} + a_{2} \vert } I_{q}^{\alpha}\bigl\vert \widetilde{f} \bigl( \delta, u( \delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta x ) (t) \vert \leq}+ \bigl\vert B_{1}(t, \delta) \bigr\vert I_{q}^{ \alpha- p_{1}} \bigl\vert \widetilde{f} \bigl(\delta, u ( \delta) \bigr) \bigr\vert + \bigl\vert B_{2}(t , \delta) \bigr\vert I_{q}^{\alpha- p_{2}} \bigl\vert \widetilde {f} \bigl( \delta, u(\delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta x ) (t) \vert \leq}+ \bigl\vert B_{3}(t , \delta) \bigr\vert I_{q}^{\alpha-p_{3}} \bigl\vert \widetilde{f} \bigl(\delta, u( \delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta x ) (t) \vert }\leq\frac{ ( \vert a_{1} \vert + 2 \vert a_{2} \vert ) L \delta^{\alpha}}{ \vert a_{1} + a_{2} \vert \varGamma _{q} (\alpha+ 1)} + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q} ( 2 -p_{1}) L \delta^{\alpha}}{ \vert a_{1} + a_{2} \vert \varGamma_{q} (\alpha- p_{1} +1)} \\& \phantom{ \vert (\varTheta x ) (t) \vert \leq} + \frac{ ( \vert a_{2} \vert p_{1} + \vert a_{1} + a_{2} \vert ( 4 - p_{1})) \varGamma_{q}( 3 - p_{2}) L \delta^{ \alpha} }{ 2 \vert a_{1} + a_{2} \vert (2 - p_{1}) \varGamma_{q}( \alpha- p_{2} +1)} \\& \phantom{ \vert (\varTheta x ) (t) \vert \leq} + \frac{ \vert a_{2} \vert [ 6 ( p_{2} - p_{1}) + ( 2 - p_{1})(3 - p_{1})p_{2} ] \varGamma_{q}(4-p_{3}) L \delta^{\alpha}}{ 6 \vert a_{1} + a_{2} \vert ( 2 - p_{1}) (3 - p_{1}) ( 3 - p_{2}) \varGamma_{q} (\alpha-p_{3} + 1)} \\& \phantom{ \vert (\varTheta x ) (t) \vert \leq} + \frac{ [ 6 ( p_{2} - p_{1}) + ( 2 - p_{1}) ( 3 - p_{1}) ( 6 - p_{2})] \varGamma_{q}( 4 - p_{3}) L \delta^{\alpha}}{ 6 (2 - p_{1})( 3 - p_{1})( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} +1)}, \\& \bigl\vert (\varTheta u)' (t) \bigr\vert \leq I_{q}^{\alpha-1} \bigl\vert \widetilde{f} \bigl(t, u(t) \bigr) \bigr\vert + \varGamma( 2 - p_{1}) \delta^{p_{1} -1} I_{q}^{\alpha- p_{1}} \bigl\vert \widetilde {f} \bigl(\delta, u( \delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u)' (t) \vert \leq} + \frac{ \vert \delta- (2 - p_{1}) t \vert \varGamma_{q}(3 - p_{2}) \delta^{p_{2} -2}}{( 2 - p_{1})} I_{q}^{\alpha- p_{2}} \bigl\vert \widetilde{f} \bigl(\delta, u(\delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u)' (t) \vert \leq} + \frac{ \varGamma_{q}( 4 - p_{3}) \delta^{ p_{3} -3}}{ 2 ( 2 - p_{1})( 3 - p_{1})( 3 -p_{2}) } \\& \phantom{ \vert (\varTheta u)' (t) \vert \leq} \times \bigl\vert 2 (p_{2} - p_{1}) \delta^{2} + ( 2 - p_{1}) ( 3 - p_{1}) \bigl( - 2 \delta t + ( 3 - p_{2}) t^{2} \bigr) \bigr\vert I_{q}^{\alpha- p_{3}} \bigl\vert \widetilde{f} \bigl(\delta, u( \delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u)' (t) \vert } \leq \frac{ \delta^{ \alpha- 1} L}{ \varGamma_{q}( \alpha)} + \frac {\varGamma_{q}( 2 - p_{1}) L \delta^{\alpha- 1}}{ \varGamma_{q}( \alpha- p_{q} +1)} + \frac{( 3 -p_{1}) \varGamma_{q}( 3 - p_{2}) L \delta^{ \alpha- 1}}{( 2 - p_{1}) \varGamma_{q}( \alpha- p_{2} + 1)} \\& \phantom{ \vert (\varTheta u)' (t) \vert \leq} + \frac{[2 ( p_{2} - p_{1}) + (2 - p_{1}) ( 3 - p_{1})( 5 - p_{2}) ] \varGamma_{q}( 4 -p_{3} ) L \delta^{\alpha- 1}}{ 2 ( 2 - p_{1}) ( 3 - p_{1})( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} + 1)}, \\& \bigl\vert (\varTheta u)''(t) \bigr\vert \leq I_{q}^{\alpha- 2} \bigl\vert \widetilde{f} \bigl(t, u(t) \bigr) \bigr\vert + \varGamma(3-q) \delta^{2 - p_{2}} I_{q}^{\alpha- p_{2}} \bigl\vert \widetilde{ f} \bigl(\delta , u(\delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u)''(t) \vert \leq} + \frac{ \vert {-} \delta+ (3 - p_{2}) t \vert \varGamma_{q}( 4 -p_{3}) \delta^{ p_{3}-3}}{( 3 - p_{2}) } I_{q}^{\alpha- p_{3}} \bigl\vert \widetilde{f} \bigl(\delta, u(\delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u)''(t) \vert } \leq\frac{ L \delta^{ \alpha- 2}}{ \varGamma_{q}( \alpha- 1)} + \frac {\varGamma_{q}( 3 - p_{2}) L \delta^{\alpha- 2}}{\varGamma_{q}( \alpha- p_{2} + 1)} + \frac{( 4 - p_{2}) \varGamma_{q}( 4 - p_{3}) L \delta^{\alpha- 2}}{( 3 - p_{2}) \varGamma_{q}( \alpha- p_{3} + 1)}, \\& \bigl\vert (\varTheta u)'''(t) \bigr\vert \leq I_{q}^{\alpha-3} \bigl\vert \widetilde{f} \bigl(t, u(t) \bigr) \bigr\vert + \varGamma_{q}( 4 -p_{3}) \delta^{p_{3}-3} I_{q}^{\alpha- p_{3}} \bigl\vert \widetilde{f} \bigl(\delta, u(\delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u)'''(t) \vert }\leq \frac{ L \delta^{\alpha- 3}}{ \varGamma_{q}( \alpha- 2)} + \frac{ \varGamma_{q}( 4 - p_{3}) L \delta^{ \alpha- 3}}{ \varGamma_{q}( \alpha- p_{3} + 1)}, \end{aligned}$$
for almost all \(u\in\mathcal{B}\). Hence, we have
$$\begin{aligned} \Vert \varTheta u \Vert ={}& \sup_{t\in\overline{J} } \bigl\vert ( \varTheta u) (t) \bigr\vert + \sup_{t \in\overline{J} } \bigl\vert ( \varTheta u)' (t) \bigr\vert + \sup_{t\in\overline {J}} \bigl\vert (\varTheta u)''(t) \bigr\vert + \sup _{t\in\overline{J}} \bigl\vert (\varTheta u)''' (t) \bigr\vert \\ \leq{}& \biggl[ \frac{ \vert a_{1} \vert + 2 \vert a_{2} \vert }{ \vert a_{1} + a_{2} \vert \varGamma_{q}( \alpha+ 1 )} + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q}( 2 - p_{1})}{ \vert a_{1} +a_{2} \vert \varGamma_{q}( \alpha- p_{1} + 1)} \\ & + \frac{( \vert a_{2} \vert p_{1} + \vert a_{1}+ a_{2} \vert ( 4 - p_{1})) \varGamma_{q}( 3 -p_{2})}{ 2 \vert a_{1} +a_{2} \vert ( 2 - p_{1}) \varGamma_{q}( \alpha- p_{2} +1 )} \\ & + \frac{ \vert a_{2} \vert [6 (p_{2} - p_{1}) + ( 2 - p_{1})( 3 - p_{1}) p_{2}]\varGamma _{q}(4 - p_{3}) }{ 6 \vert a_{1} +a_{2} \vert ( 2 - p_{1})( 3 - p_{1})( 3 - p_{2}) \varGamma_{q}( \alpha- p_{3} + 1) } \\ & + \frac{ [6 ( p_{2} - p_{1}) + (2 - p_{1})( 3 - p_{1})( 6 - p_{2})] \varGamma _{q}( 4 -p_{3})}{ 6 ( 2 - p_{1})( 3 - p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr] L \delta^{\alpha} \\ & + \biggl[ \frac{1}{\varGamma_{q}( \alpha) } + \frac{ \varGamma_{q}( 2 - p_{1}) }{ \varGamma_{q} (\alpha- p_{1} + 1)} + \frac{( 3 -p_{1}) \varGamma_{q}( 3 - p_{2})}{( 2 -p_{1}) \varGamma_{q}( \alpha- p_{2} +1)} \\ & + \frac{[ 2 ( p_{2} -p_{1}) + ( 2 - p_{1})( 3 - p_{1})( 5 -p_{2})] \varGamma _{q} (4 -p_{3}) }{ 2( 2 - p_{1})( 3 -p_{1})( 3 -p_{2}) \varGamma_{q} (\alpha- p_{3}+ 1)} \biggr] L \delta^{ \alpha- 1} \\ & + \biggl[ \frac{1}{ \varGamma_{q}( \alpha- 1)} + \frac{ \varGamma_{q} (3 - p_{2})}{ \varGamma_{q} (\alpha- p_{2} + 1)} + \frac{ ( 4 - p_{2}) \varGamma_{q} ( 4 - p_{3})}{( 3 -p_{2}) \varGamma_{q} ( \alpha- p_{3} + 1)} \biggr] L \delta^{ \alpha - 2} \\ & + \biggl[ \frac{1}{ \varGamma_{q}(\alpha- 2)} + \frac{ \varGamma_{q} (4 - p_{3})}{ \varGamma_{q}( \alpha- p_{3}+1)} \biggr] L \delta^{ \alpha- 3} \\ ={}&\varLambda _{1} L, \end{aligned}$$
(10)
where
$$ \begin{aligned}[b] \varLambda_{1} ={}& \biggl[ \frac{ \vert a_{1} \vert + 2 \vert a_{2} \vert }{ \vert a_{1} +a_{2} \vert \varGamma_{q}( \alpha+ 1)} + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q} (2 - p_{1})}{ \vert a_{1} + a_{2} \vert \varGamma_{q} (\alpha- p_{1} +1)} \\ & + \frac{( \vert a_{2} \vert p_{1} + \vert a_{1} +a_{2} \vert (4 - p_{1})) \varGamma_{q} (3- p_{2})}{ 2 \vert a_{1} +a_{2} \vert ( 2 -p_{1}) \varGamma_{q} (\alpha- p_{2}+1)} \\ & + \frac{ \vert a_{2} \vert [6(p_{2} - p_{1}) + (2 -p_{1})( 3 -p_{1}) p_{2}] \varGamma _{q}(4-p_{3}) }{ 6 \vert a_{1} +a_{2} \vert (2 - p_{1}) (3 - p_{1})( 3- p_{2}) \varGamma_{q}( \alpha - p_{3} + 1)} \\ & + \frac{ [ 6( p_{2} -p_{1}) +(2 - p_{1})( 3 -p_{1})( 6 -p_{2}) ] \varGamma_{q} (4 -p_{3}) }{ 6 (2 - p_{1})( 3 -p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha-p_{3} + 1)} \biggr] \delta^{\alpha} \\ & + \biggl[ \frac{1}{ \varGamma_{q}(\alpha)} + \frac{ \varGamma_{q}( 2 -p_{1}) }{ \varGamma_{q}( \alpha- p_{1}+1)} + \frac{( 3 -p_{1}) \varGamma_{q}( 3 - p_{2})}{( 2 -p_{1}) \varGamma_{q}( \alpha-p_{2} + 1)} \\ & + \frac{[ 2 (p_{2} - p_{1}) + ( 2 -p_{1}) ( 3 -p_{1}) ( 5 -p_{2}) ] \varGamma _{q}( 4 -p_{3}) }{ 2 ( 2- p_{1})( 3 -p_{1}) ( 3 - p_{2}) \varGamma_{q} (\alpha-p_{3} + 1)} \biggr] \delta^{\alpha-1} \\ & + \biggl[ \frac{1}{\varGamma_{q}( \alpha- 1)} + \frac{ \varGamma_{q} ( 3 -p_{2})}{ \varGamma_{q}( \alpha- p_{2} + 1)} + \frac{ ( 4 - p_{2}) \varGamma_{q}( 4 -p_{3})}{ ( 3 - p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr] \delta^{ \alpha- 2} \\ & + \biggl[ \frac{1}{ \varGamma_{q}( \alpha- 2)} + \frac{ \varGamma_{q}( 4 -p_{3})}{ \varGamma_{q} (\alpha- p_{3} +1)} \biggr] \delta ^{\alpha- 3}. \end{aligned} $$
(11)
Equation (10) implies that \(\varTheta(\mathcal{B} )\) is a bounded set. Now, we demonstration that the sets of all Θu, \((\varTheta u)'\), \((\varTheta u)''\), and \((\varTheta u)'''\) are equicontinuous on for all \(u \in\mathcal{B}\). Let \(t_{1}\) and \(t_{2}\) in . If \(t_{1} \leq t_{2}\), then we get
$$\begin{aligned} \bigl\vert (\varTheta u) (t_{2}) - (\varTheta u) ( t_{1}) \bigr\vert ={}& \biggl\vert I_{q}^{\alpha}\widetilde {f} \bigl(t_{2} ,u (t_{2}) \bigr) - I_{q}^{\alpha}\widetilde{f} \bigl(t_{1}, u(t_{1}) \bigr) \\ & - (t_{2} - t_{1}) \varGamma_{q}(2 - p_{1}) \delta^{p_{1} - 1} I_{q}^{\alpha- p_{1}} \widetilde{f} \bigl(\delta, u(\delta) \bigr) \\ & + \frac{[2 \delta( t_{2} -t_{1}) -( 2 - p_{1}) (t_{2}^{2} - t_{1}^{2})] \varGamma_{q} (3 - p_{2}) \delta^{p_{2} - 2} }{ 2 ( 2 - p_{1}) } \\ & \times I_{q}^{\alpha-p_{2}} \widetilde{f} \bigl( \delta, u( \delta) \bigr) \\ & - \frac{6(p_{2} - p_{1}) \delta^{2} (t_{2} - t_{1}) \varGamma_{q}( 4 - p_{3}) \delta^{ p_{3} -3} }{ 6(2 - p_{1})( 3 - p_{1})( 3 -p_{2}) } \\ & - \frac{ (2 - p_{1})( 3 - p_{1}) \varGamma_{q}( 4 - p_{3}) \delta^{ p_{3} -3}}{ 6(2 - p_{1})( 3 - p_{1})( 3 -p_{2})} \\ & \times \bigl[ - 3 \delta \bigl(t_{2}^{2} - t_{1}^{2} \bigr) + ( 3 -p_{2}) \bigl( t_{2}^{3} - t_{1}^{3} \bigr) \bigr] I_{q}^{\alpha- p_{3}} \widetilde{f} \bigl(\delta, u(\delta) \bigr) \biggr\vert \\ \leq{}&\frac{ L }{ \varGamma_{q}(\alpha)} \int_{0}^{t_{1}} \bigl[(t_{2} -qs)^{(\alpha -1)} - (t_{1} - qs)^{(\alpha-1) } \bigr] \,d_{q}s \\ & + \frac{ L }{ \varGamma_{q}( \alpha)} \int_{t_{1}}^{t_{2}} (t_{2} -qs)^{(\alpha-1)} \,d_{q}s \\ & + \frac{ (t_{2} - t_{1}) \varGamma_{q} (2 - p_{1}) L \delta^{\alpha-1}}{ \varGamma_{q}( \alpha- p_{1} +1)} \\ & + \frac{ [2 \delta(t_{2} -t_{1}) + (2 -p_{1})( t_{2}^{2} - t_{1}^{2}) ] \varGamma_{q}( 3 -p_{2}) L \delta^{ \alpha-2}}{ 2 ( 2 - p_{1}) \varGamma_{q}(\alpha- p_{2}+1)} \\ & + \frac{(p_{2} -p_{1}) \delta^{2} (t_{2}-t_{1}) \varGamma_{q}(4 - p_{3}) L\delta ^{\alpha- 3}}{(2-p_{1})(3 -p_{1}) (3 -p_{2}) \varGamma_{q}( \alpha -p_{3}+1)} \\ & + \frac{(2 -p_{1})( 3 -p_{1})\varGamma_{q} ( 4-p_{3}) L\delta^{\alpha-3}}{ 6 (2-p_{1})( 3 - p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3}+ 1)} \\ & \times \bigl[ 3 \delta \bigl(t_{2}^{2} - t_{1}^{2} \bigr) + (3 -p_{2}) \bigl( t_{2}^{3} - t_{1}^{3} \bigr) \bigr] \\ \leq{}&\frac{ L}{ \varGamma_{q}( \alpha+1)} \bigl(t_{2}^{\alpha} -t_{1}^{\alpha} \bigr) + \frac{ (t_{2}-t_{1}) \varGamma_{q}( 2 -p_{1}) L \delta^{\alpha-1}}{ \varGamma_{q}( \alpha- p_{1} +1)} \\ & + \frac{ [2\delta(t_{2}-t_{1}) + (2-p_{1})(t_{2}^{2} - t_{1}^{2})] \varGamma_{q}(3- p_{2} ) L \delta^{ \alpha- 2}}{ 2 (2 - p_{1}) \varGamma_{q}(\alpha - p_{2} +1)} \\ & + \frac{ (p_{2} -p_{1}) \delta^{2} (t_{2} - t_{1}) \varGamma_{q}( 4-p_{3}) L \delta^{\alpha- 3}}{ ( 2 -p_{1})( 3-p_{1})( 3-p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \\ & + \frac{ (2 - p_{1})( 3 -p_{1}) \varGamma_{q}( 4-p_{3}) L \delta^{\alpha- 3}}{ 6( 2 -p_{1})( 3-p_{1})( 3-p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \\ & \times \bigl[3 \delta \bigl( t_{2}^{2} -t_{1}^{2} \bigr) + (3- p_{2}) \bigl( t_{2}^{3} - t_{1}^{3} \bigr) \bigr]. \end{aligned}$$
(12)
Again, by using a similar technique, we have
$$\begin{aligned}& \begin{aligned}[b] \bigl\vert (\varTheta u)'( t_{2}) - (\varTheta u)'(t_{1}) \bigr\vert \leq{}& \frac{L}{ \varGamma_{q}(\alpha )} \bigl(t_{2}^{\alpha-1} -t_{1}^{\alpha-1} \bigr) \\ & + \frac{ (t_{2}-t_{1}) \varGamma_{q} (3-p_{2}) L\delta^{\alpha-2}}{\varGamma _{q}(\alpha-p_{2}+1)} \\ & + \frac{\varGamma_{q}( 4 -p_{3}) L\delta^{ \alpha- 3}}{ 2(3-p_{2}) \varGamma_{q}(\alpha- p_{3}+1)} \\ & \times \bigl[2\delta(t_{2} - t_{1}) + (3-p_{2}) \bigl(t_{2}^{2}-t_{1}^{2} \bigr) \bigr], \end{aligned} \end{aligned}$$
(13)
$$\begin{aligned}& \begin{aligned}[b] \bigl\vert (\varTheta u)'' (t_{2}) - ( \varTheta u)''(t_{1}) \bigr\vert \leq{}& \frac{L}{ \varGamma _{q}(\alpha-1)} \bigl(t_{2}^{\alpha-2} - t_{1}^{\alpha-2} \bigr) \\ & + \frac{ (t_{2}-t_{1}) \varGamma_{q}( 4 - p_{3})L\delta^{ \alpha-3}}{ \varGamma_{q}( \alpha- p_{3}+1)},\end{aligned} \end{aligned}$$
(14)
$$\begin{aligned}& \bigl\vert (\varTheta u)''' (t_{2}) - (\varTheta u)'''( t_{1}) \bigr\vert \leq\frac{L}{ \varGamma _{q}( \alpha-2)} \bigl(t_{2}^{\alpha-3} - t_{1}^{\alpha-3} \bigr). \end{aligned}$$
(15)
If \(t_{2} \to t_{1}\), then right-hand sides of all inequalities (12)–(15) tend to zero, and so Θ is completely continuous. This completes the proof. □
Theorem 5
Problem (1) under conditions (3), (4), and (5), has at least one solution whenever function f mapping \(\overline{J} \times\mathcal{R}^{m} \) into \(\mathbb{R}\) is continuous and the following assumptions hold for each \(t, s \in\overline{J}\), \({}_{i}x_{j} \in\mathbb{R}\):
(1)
There exists positive constants \(d_{0}>0\) and \({}_{0}d_{j_{0}}\), \({}_{1}d_{j_{1}}\), \({}_{2}d_{j_{2}}\), \({}_{3}d_{j_{3}} \in[0, \infty)\) such that
$$\begin{aligned}& \bigl\vert f (t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{0}x_{6}, {}_{1}x_{1}, {}_{1}x_{2}, \dots, \\& \qquad {}_{1}x_{k_{1}}, {}_{2}x_{1}, {}_{2}x_{2}, \dots, {}_{2}x_{k_{2}}, {}_{3}x_{1}, {}_{3}x_{2}, \dots, {}_{3}x_{k_{3}}) \bigr\vert \\& \quad \leq d_{0} + \sum_{j=1}^{6} {}_{0}d_{j} \vert {}_{0}x_{j} \vert + \sum_{j=1}^{k_{1}} {}_{1}d_{j} \vert {}_{1}x_{j} \vert + \sum_{j=1}^{k_{2}} {}_{2}d_{j} \vert {}_{2}x_{j} \vert + \sum_{j=1}^{k_{3}} {}_{3}d_{j} \vert {}_{3}x_{j} \vert , \end{aligned}$$
for \(j_{0}\), \(j_{1}\), \(j_{2}\), \(j_{3}\) belonging to \(N_{6}\), \(N_{k_{1}}\), \(N_{k_{2}}\), and \(N_{k_{3}}\), respectively.
 
(2)
There exist constants \({}_{0}c_{1}\), \({}_{0}c_{2}\) in \((0, \infty)\) and \({}_{i}\eta_{j} \in[0, \infty)\) such that
$$\bigl\vert \theta_{i} (t, s, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}) \bigr\vert \leq{}_{0}c_{i} + \sum _{j=1}^{7} {}_{i} \eta_{j} \vert x_{j} \vert , $$
for each \(x_{i}\in\mathbb{R}\), where \(i=1,2\) and \(j \in N_{7}\). In addition,
$$\begin{aligned} \varLambda'_{1} ={}& \varLambda_{1} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{0}d_{j} \Biggr) \\ &+ {}_{0}d_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 -\gamma_{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 -\gamma_{12})} + {}_{1}c_{7} \frac{\delta^{ 3 - \gamma_{13}}}{\varGamma_{q}(4 - \gamma_{13})} \Biggr) \\ & + {}_{0}d_{6}\gamma_{2}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{2}c_{j} \Biggr) + {}_{2}c_{5} \frac{\delta^{1 - \gamma_{21}}}{\varGamma_{q}( 2 -\gamma_{21})} + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{\varGamma_{q}( 3 -\gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{\varGamma_{q}( 4 -\gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} {}_{1}d_{j} \frac{\delta^{ 1 -\beta_{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} + \sum_{j=1}^{k_{2}} {}_{2}d_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} + \sum _{j=1}^{k_{3}} {}_{3}d_{j} \frac{\delta^{ 3 -\beta _{3j}}}{\varGamma_{q}( 4 -\beta_{3j})} \Biggr] \\ < {}&1, \end{aligned}$$
where \(\gamma_{i}^{0}= \sup_{t\in\overline{J}} \int_{0}^{t} |\mu_{i} (t,s)|\, ds\) and \(\varLambda_{1}\) is defined in Eq. (11) for \(i=1,2\).
 
Proof
Thus, Theorem 4 implies that operator Θ of \(\mathcal {X} \) to itself is completely continuous. Now, we prove that \(\mathcal {B} \subset \mathcal{X}\) which contains all \(u \in\mathcal{X}\) such that \(u= \lambda\varTheta(u)\) where \(\lambda\in(0,1)\) is bounded. Let \(u \in\mathcal{B}\) and \(t\in \overline{J}\). Then, we obtain
$$\begin{aligned}& u(t) = \lambda I_{q}^{\alpha}\widetilde{f} \bigl( t, u(t) \bigr) - \frac{a_{2}}{(a_{1} + a_{2}) } \lambda I_{q}^{\alpha}\widetilde{f} \bigl(\delta, u(\delta) \bigr)+ B_{1}(t, \delta) \lambda I_{q}^{\alpha-p_{1}} \widetilde{f} \bigl(\delta, u( \delta) \bigr) \\& \phantom{u(t) =} - B_{2}(t, \delta) \lambda I_{q}^{\alpha- p_{2}} \widetilde {f} \bigl(\delta, u(\delta) \bigr) - B_{3}(t, \delta) \lambda I_{q}^{\alpha- p_{3}} \widetilde{f} \bigl(\delta, u(\delta) \bigr), \\& u'(t) =\lambda I_{q}^{\alpha-1} \widetilde{f} \bigl(t,u(t) \bigr) - \varGamma_{q} ( 2 -p_{1}) \delta^{ 1 -p_{1}} \lambda I_{q}^{\alpha- p_{1}} \widetilde{f} \bigl(\delta, u(\delta) \bigr) \\& \phantom{u'(t) =} + \frac{[\delta-( 2 -p_{1}) t] \varGamma_{q}( 3 -p_{2}) \delta^{p_{2}-2} }{( 2 -p_{1})} \lambda I_{q}^{\alpha- p_{2}} \widetilde{f} \bigl(\delta, u(\delta ) \bigr) \\& \phantom{u'(t) =} - \frac{ \varGamma_{q}( 4-p_{3}) \delta^{p_{3} -3}}{ 2(2 - p_{1})( 3 -p_{1})( 3-p_{2}) } \\& \phantom{u'(t) =} \times \bigl[ 2 ( p_{2} -p_{1}) \delta^{2} + (2 - p_{1}) ( 3 - p_{1}) \bigl( -2 \delta t+( 3 -p_{2}) t^{2} \bigr) \bigr] \\& \phantom{u'(t) =} \times \lambda I_{q}^{\alpha-p_{3}} \widetilde{f} \bigl(\delta, u( \delta ) \bigr), \\& u''(t) = \lambda I_{q}^{\alpha- 2} \widetilde{f} \bigl(t, u(t) \bigr) - \varGamma_{q}( 3 - p_{2}) \delta^{2 - p_{2}} \lambda I_{q}^{\alpha-p_{2}} \widetilde{f} \bigl(\delta, u(\delta) \bigr) \\& \phantom{u''(t) =} - \frac{[-\delta+ ( 3 - p_{2}) t ] \varGamma_{q}( 4 -p_{3}) \delta ^{p_{3}-3}}{ ( 3 -p_{2}) } \lambda I_{q}^{\alpha-p_{3}} \widetilde{f} \bigl(\delta, u(\delta) \bigr), \\& u'''(t) = \lambda I_{q}^{\alpha-3} \widetilde{f} \bigl(t, u(t) \bigr) - \varGamma_{q}( 4 -p_{3}) \delta^{p_{3}-3} \lambda I_{q}^{\alpha- p_{3}} \widetilde {f} \bigl(\delta, u(\delta) \bigr). \end{aligned}$$
Therefore, we have
$$\begin{aligned}& \bigl\vert u(t) \bigr\vert = \lambda \bigl\vert \varTheta u(t) \bigr\vert \\& \phantom{ \vert u(t) \vert } \leq \Biggl[ d_{0} + \Biggl(\sum _{j=1}^{4} {}_{0}d_{j} \Vert u \Vert \Biggr) + {}_{0}d_{5}\gamma_{1}^{0} \Biggl( {}_{0}c_{1} + \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Vert u \Vert \Biggr) \\& \phantom{ \vert u(t) \vert =} + {}_{1}c_{5} \frac{\delta^{ 1 - \gamma_{11}} }{ \varGamma_{q}( 2 -\gamma _{11})} \Vert u \Vert + {}_{1}c_{6} \frac{\delta^{ 2 -\gamma_{12}}}{ \varGamma_{q}( 3 - \gamma_{12})} \Vert u \Vert \\& \phantom{ \vert u(t) \vert =} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}} }{ \varGamma_{q}( 4 - \gamma _{13}) } \Vert u \Vert \Biggr) + {}_{0}d_{6} \gamma_{2}^{0} \Biggl( {}_{0}c_{2} + \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Vert x \Vert \Biggr) \\& \phantom{ \vert u(t) \vert =} + {}_{2}c_{5} \frac{ \delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma _{21})} \Vert u \Vert + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} \Vert u \Vert \\& \phantom{ \vert u(t) \vert =} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Vert u \Vert \Biggr) + \sum_{j=1}^{k_{1}} {}_{1}d_{j} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} \Vert u \Vert \\& \phantom{ \vert u(t) \vert =} + \sum_{j=1}^{k_{2}} {}_{2}d_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Vert u \Vert + \sum _{j=1}^{k_{3}} {}_{3}d_{j} \frac{\delta ^{ 3 -\beta_{3j}}}{\varGamma_{q}( 4 -\beta_{3j})} \Vert u \Vert \Biggr] \\& \phantom{ \vert u(t) \vert =} \times \biggl[ \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert )\delta^{ \alpha}}{ \vert a_{1} + a_{2} \vert \varGamma_{q}( \alpha+ 1)} + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q}( 2 - p_{1}) \delta^{\alpha}}{ \vert a_{1} + a_{2} \vert \varGamma_{q}( \alpha- p_{1} +1)} \\& \phantom{ \vert u(t) \vert =} + \frac{( \vert a_{2} \vert p_{1} + \vert a_{1} +a_{2} \vert ( 4 -p_{1})) \varGamma_{q}( 3 - p_{2}) \delta^{\alpha}}{ 2 \vert a_{1}+a_{2} \vert ( 2 -p_{1}) \varGamma_{q}( \alpha- p_{2} +1)} \\& \phantom{ \vert u(t) \vert =} + \frac{ \vert a_{2} \vert [ 6 (p_{2} - p_{1}) + (2- p_{1})( 3 - p_{1})p_{2}] \varGamma _{q}(4-p_{3}) \delta^{\alpha}}{ 6 \vert a_{1}+ a_{2} \vert ( 2 - p_{1}) ( 3 - p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3} + 1)} \\& \phantom{ \vert u(t) \vert =} + \frac{[6 (p_{2}- p_{1})+ (2 - p_{1})( 3 -p_{1})( 6 -p_{2})] \varGamma_{q} ( 4 - p_{3}) \delta^{\alpha}}{ 6( 2 -p_{1}) ( 3 -p_{1})( 3-p_{2}) \varGamma_{q}( \alpha - p_{3} +1)} \biggr], \\& \bigl\vert u'(t) \bigr\vert = \lambda \bigl\vert ( \varTheta u)'(t) \bigr\vert \\& \phantom{ \vert u'(t) \vert } \leq \Biggl[d_{0} + \Biggl( \sum _{j=1}^{4} {}_{0}d_{j} \Vert u \Vert \Biggr) + {}_{0}d_{5} \gamma_{1}^{0} \Biggl( {}_{0}c_{1} + \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Vert u \Vert \Biggr) \\& \phantom{ \vert u'(t) \vert =} + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}( 2 -\gamma _{11})} \Vert u \Vert +{}_{1}c_{6} \frac{\delta^{ 2 -\gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} \Vert u \Vert \\& \phantom{ \vert u'(t) \vert =}+{}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Vert u \Vert \Biggr) + {}_{0}d_{6} \gamma_{2}^{0} \Biggl( {}_{0}c2 + \Biggl(\sum_{j=1}^{4} {}_{2}c_{j} \Vert u \Vert \Biggr) \\& \phantom{ \vert u'(t) \vert =} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma _{21})} \Vert u \Vert + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{ \varGamma_{q}( 3 - \gamma_{22})} \Vert u \Vert \\& \phantom{ \vert u'(t) \vert =} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 -\gamma _{23})} \Vert u \Vert \Biggr) + \sum_{j=1}^{k_{1}} {}_{1}d_{j} \frac{\delta^{ 1 -\beta _{1j} }}{ \varGamma_{q}( 2 -\beta_{1j})} \Vert u \Vert \\& \phantom{ \vert u'(t) \vert =} + \sum_{j=1}^{k_{2}} {}_{2}d_{j} \frac{\delta^{ 2 -\beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Vert u \Vert + \sum _{j=1}^{k_{3}} \beta_{2j} \frac {\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}(4 - \beta_{3j})} \Vert u \Vert \Biggr] \\& \phantom{ \vert u'(t) \vert =}\times \biggl[ \frac{ \delta^{ \alpha- 1}}{ \varGamma_{q}( \alpha)} + \frac{ \varGamma_{q}( 2 -p_{1}) \delta^{\alpha- 1}}{ \varGamma_{q}( \alpha- p_{1} +1)} + \frac{ ( 3- p_{1}) \varGamma_{q}( 3- p_{2}) \delta^{ \alpha- 1}}{( 2 -p_{1}) \varGamma_{q}( \alpha- p_{2} + 1)} \\& \phantom{ \vert u'(t) \vert =} + \frac{[ 2(p_{2} -p_{1}) + ( 2 -p_{1})( 3 -p_{1})( 5 -p_{2})] \varGamma_{q}( 4 -p_{3}) \delta^{ \alpha- 1}}{ 2( 2 - p_{1})( 3 -p_{1})( 3-p_{2}) \varGamma_{q}( \alpha- p_{3}+1)} \biggr], \\& \bigl\vert u''(t) \bigr\vert = \lambda \bigl\vert (\varTheta u)''(t) \bigr\vert \\& \phantom{ \vert u''(t) \vert }\leq \Biggl[ d_{0} + \Biggl( \sum _{j=1}^{4} {}_{0}d_{j} \Vert u \Vert \Biggr) + {}_{0}d_{5} \gamma_{1}^{0} \Biggl( {}_{0}c_{1} + \Biggl(\sum_{j=1}^{4} {}_{1}c_{j} \Vert u \Vert \Biggr) \\& \phantom{ \vert u''(t) \vert =} + {}_{1}c_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 - \gamma _{11})} \Vert u \Vert + {}_{1}c_{6} \frac{\delta^{ 2 -\gamma_{12}}}{ \varGamma_{q}( 3 - \gamma_{12})} \Vert u \Vert \\& \phantom{ \vert u''(t) \vert =} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 -\gamma _{13}) } \Vert u \Vert \Biggr) + {}_{0}d_{6} \gamma_{2}^{0} \Biggl({}_{0}c_{2} + \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Vert u \Vert \Biggr) \\& \phantom{ \vert u''(t) \vert =} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma _{21})} \Vert u \Vert + {}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 - \gamma_{22})} \Vert u \Vert \\& \phantom{ \vert u''(t) \vert =} + {}_{2}c_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}(4 - \gamma _{23})} \Vert u \Vert \Biggr) + \sum_{j=1}^{k_{1}} {}_{1}d_{j} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} \Vert u \Vert \\& \phantom{ \vert u''(t) \vert =} + \sum_{j=1}^{k_{2}} {}_{2}d_{j} \frac{\delta^{ 2 -\beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Vert u \Vert + \sum _{k=1}^{k_{3}} {}_{3}d_{j} \frac{\delta ^{ 3 -\beta_{3j}}}{ \varGamma_{q} (4 - \beta_{3j})} \Vert u \Vert \Biggr] \\& \phantom{ \vert u''(t) \vert =} \times \biggl[ \frac{ \delta^{ \alpha- 2}}{ \varGamma_{q}( \alpha- 1)} + \frac{ \varGamma_{q}( 3 - p_{2}) \delta^{ \alpha- 2}}{ \varGamma_{q}(\alpha - p_{2} + 1)} + \frac{ ( 4 -p_{2}) \varGamma_{q} (4 - p_{3}) \delta^{ \alpha- 2}}{( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr], \\& \bigl\vert u'''(t) \bigr\vert = \lambda \bigl\vert (\varTheta u)''' ( t) \bigr\vert \\& \phantom{ \vert u'''(t) \vert } \leq \Biggl[ d_{0} + \Biggl( \sum _{j+1}^{4} {}_{0}d_{j} \Vert u \Vert \Biggr) + {}_{0}d_{5} \gamma_{1}^{0} \Biggl( {}_{0}c_{1} + \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Vert x \Vert \Biggr) \\& \phantom{ \vert u'''(t) \vert =} + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}( 2 -\gamma _{1}1)} \Vert u \Vert + {}_{1}c_{6} \frac{\delta^{ 2 -\gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} \Vert u \Vert \\& \phantom{ \vert u'''(t) \vert =} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 -\gamma _{13})} \Vert u \Vert \Biggr) + {}_{0}d_{6} \gamma_{2}^{0} \Biggl( {}_{0}c_{2} + \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Vert u \Vert \Biggr) \\& \phantom{ \vert u'''(t) \vert =} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma _{21})} \Vert u \Vert + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{ \varGamma_{q}( 3 - \gamma_{22})} \Vert u \Vert \\& \phantom{ \vert u'''(t) \vert =}+ {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4- \gamma _{23})} \Vert u \Vert \Biggr) + \sum_{j=1}^{k_{1}} {}_{1}d_{j} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} \Vert u \Vert \\& \phantom{ \vert u'''(t) \vert =} + \sum_{j=1}^{k_{2}} {}_{2}d_{j} \frac{\delta^{ 2 -\beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Vert u \Vert \sum _{j=1}^{k_{3}} {}_{3}d_{j} \frac{\delta^{ 3 -\beta_{2j}}}{ \varGamma(4 - \beta_{3j})} \Vert u \Vert \Biggr] \\& \phantom{ \vert u'''(t) \vert =} \times \biggl[ \frac{ \delta^{ \alpha- 3}}{ \varGamma_{q}( \alpha- 2)} + \frac{ \varGamma_{q}( 4 -p_{3}) \delta^{ \alpha- 3}}{ \varGamma_{q}( \alpha - p_{3} + 1)} \biggr]. \end{aligned}$$
Thus, we conclude that
$$\begin{aligned} \Vert u \Vert \leq{}& \varLambda_{1} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{0}d_{j} \Biggr) + {}_{0}d_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Biggr) \\ & + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}( 2 -\gamma _{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{ \varGamma_{q}( 3 -\gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4- \gamma _{13})} \Biggr) \\ & + {}_{0}d_{6} \gamma_{2}^{0} \Biggl( \Biggl(\sum_{j=1}^{4} {}_{2}c_{j} \Biggr) + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma_{21})} + {}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} \\ & + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) + \sum _{j=1}^{k_{1}} {}_{1}d_{j} \frac{\delta^{1 - \beta _{1j}}}{ \varGamma_{q}(2 - \beta_{1j})} \\ & + \sum_{j=1}^{k_{2}} {}_{2}d_{j} \frac{\delta^{ 2 -\beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} + \sum_{j=1}^{k_{3}} {}_{3}d_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}(4 -\beta_{3j})} \Biggr] \Vert u \Vert \\ & + \varLambda_{1} \bigl(d_{0} + {}_{0}d_{5} \gamma_{1}^{0} {}_{0}c_{1} + {}_{0}d_{6} \gamma_{1}^{0} {}_{0}c_{2} \bigr). \end{aligned}$$
Hence, \((1 -\varLambda'_{1}) \|u\| \leq\varLambda_{1}( d_{0} + {}_{0}d_{5} \gamma_{1}^{0} {}_{0}c_{1} +{}_{0}d_{6} \gamma_{2}^{0} {}_{0}c_{2})\). Therefore, the set \(\mathcal{B}\) is bounded. At present, by employing Theorem 3, the operator Θ has at least one fixed point. By a simple review, we conclude that each fixed point of the operator Θ is a solution for problem (1). □
Theorem 6
Assume that the real-valued functions f and \(\theta_{i}\), defined on \(\overline{J} \times\mathcal{R}^{m}\) and \({\overline{J}^{2}\times\mathbb {R}^{7}}\), respectively, are continuous. Then problem (1) under conditions (3), (4), and (5) has a unique solution whenever the following assumptions hold for each \(t, s \in \overline{J}\), \({}_{i}x_{j} \in\mathbb{R}\):
(1)
There exists constants \({}_{0}\eta_{j} > 0\) and \({}_{1}\eta_{j_{0}}, {}_{2}\eta_{j_{0}} , {}_{3}\eta_{j_{0}} \geq0\) such that
$$\begin{aligned}& \bigl\vert f (t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{0}x_{6}, \\& \qquad{}_{1}x_{1}, {}_{1}x_{2}, \dots, {}_{1}x_{k_{1}}, {}_{2}x_{1}, {}_{2}x_{2}, \dots, {}_{2}x_{k_{2}}, {}_{3}x_{1}, {}_{3}x_{2}, \dots, {}_{3}x_{k_{3}}) \\& \qquad{} - f \bigl(t, {}_{0}x'_{1}, {}_{0}x'_{2}, {}_{0}x'_{3}, {}_{0}x'_{4}, {}_{0}x'_{5}, {}_{0}x'_{6}, \\& \qquad {}_{1}x'_{1}, {}_{1}x'_{2}, \dots, {}_{1}x'_{k_{1}}, {}_{2}x'_{1}, {}_{2}x'_{2}, \dots, {}_{2}x'_{k_{2}}, {}_{3}x'_{1}, {}_{3}x'_{2}, \dots, {}_{3}x'_{k_{3}} \bigr) \bigr\vert \\& \quad \leq\sum_{j=1}^{6} {}_{0} \eta_{j} \bigl\vert {}_{0}x_{j} - {}_{0}x'_{j} \bigr\vert + \sum _{j=1}^{k_{1}} {}_{1}\eta_{j} \bigl\vert {}_{1}x_{j} - {}_{1}x'_{j} \bigr\vert \\& \quad\quad{}+ \sum_{j=1}^{k_{2}} {}_{2} \eta_{j} \bigl\vert {}_{2}x_{j} - {}_{2}x'_{j} \bigr\vert + \sum _{j=1}^{k_{3}} {}_{3}\eta_{j} \bigl\vert {}_{3}x_{j} - {}_{3}x'_{j} \bigr\vert , \end{aligned}$$
for \(j_{0}\), \(j_{1}\), \(j_{2}\), \(j_{3}\) belonging to \(N_{6}\), \(N_{k_{1}}\), \(N_{k_{2}}\), and \(N_{k_{3}}\), respectively.
 
(2)
There exist constants \({}_{0}c_{i}\) in \((0, \infty)\) and \({}_{i}\eta _{j} \in[0, \infty)\) such that
$$\begin{aligned}& \bigl\vert \theta_{i} (t, s, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}) - \theta_{i} \bigl(t, s, x'_{1}, x'_{2}, x'_{3}, x'_{4}, x'_{5}, x'_{6}, x'_{7} \bigr) \bigr\vert \\& \quad \leq \sum_{j=1}^{7} {}_{i}c_{j} \bigl\vert x_{j} - x'_{j} \bigr\vert , \end{aligned}$$
for each \(i=1,2\), \(x_{j}, x'j\in\mathbb{R}\), where \(j \in N_{7}\) and
$$\begin{aligned} \varLambda'_{1} ={}& \varLambda_{1} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{0} \eta_{j} \Biggr) \\ & + {}_{0}\eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Biggr)+ {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 -\gamma_{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 -\gamma_{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{\varGamma_{q}(4 - \gamma_{13})} \Biggr) \\ & + {}_{0}\eta_{6}\gamma_{2}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{2}c_{j} \Biggr) + {}_{2}c_{5} \frac{\delta^{1 - \gamma_{21}}}{\varGamma_{q}( 2 -\gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{\varGamma_{q}( 3 -\gamma _{22})}+ {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{\varGamma_{q}( 4 -\gamma _{23})} \Biggr) \\ &+ \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} + \sum_{j=1}^{k_{2}} {}_{2} \eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} + \sum _{j=1}^{k_{3}} {}_{3}\eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \\ < {}&1. \end{aligned}$$
 
Proof
We choose a positive constant r such that
$$r \bigl(1- \varLambda'_{1} \bigr) \geq \bigl( \eta_{0} + {}_{0}\eta_{5} \gamma_{1}^{0} \vartheta_{1} + {}_{0}\eta_{6} \gamma_{2}^{0} \vartheta_{2} \bigr) \varLambda_{1}, $$
where \(\eta_{0} = \sup_{ t \in\overline{J}} |f(t, 0, 0, \dots, 0)|\), \(\vartheta_{j} = \sup_{ t, s \in\overline{J}} |\theta_{j} (t, s, 0,0, \dots , 0)| \) are finite for \(j=1,2\). We claim that \(\varTheta(\mathcal{B}_{r}) \subseteq\mathcal{B}_{r}\), where \(\mathcal{B}_{r}\) is the set of all \(u \in X\) such that \(\|u\|\leq r\). In this case, considering \(u \in\mathcal{B}_{r}\), we get
$$\begin{aligned}& \bigl\vert (\varTheta u) (t) \bigr\vert \leq I_{q}^{\alpha}\bigl\vert \widetilde{f} \bigl(t, u(t) \bigr) \bigr\vert + \frac { \vert a_{2} \vert }{ \vert a_{1} +a_{2} \vert } I_{q}^{\alpha}\bigl\vert \widetilde{f} \bigl(\delta, u( \delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}+ \bigl\vert B_{1}(t, \delta) \bigr\vert I_{q}^{\alpha-p_{1}} \bigl\vert \widetilde{F} \bigl(\delta, u( \delta) \bigr) \bigr\vert + \bigl\vert B_{2}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{2}} \bigl\vert \widetilde{f} \bigl(\delta, u( \delta ) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} + \bigl\vert B_{3}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{3}} \bigl\vert \widetilde{f} \bigl(\delta, u( \delta) \bigr) \bigr\vert \\& \phantom{ \vert (\varTheta u) (t) \vert }\leq I_{q}^{\alpha}\bigl[ \bigl\vert \widetilde{f} \bigl(t, u(t) \bigr) - f(t,0,0,\dots,0) \bigr\vert + \bigl\vert f (t,0,0, \dots, 0) \bigr\vert \bigr] \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}+ \frac{ \vert a_{2} \vert }{ \vert a_{1} + a_{2} \vert } I_{q}^{\alpha}\bigl[ \bigl\vert \widetilde {f} \bigl(\delta, u(\delta) \bigr) -f(\delta, 0,0, \dots, 0) \bigr\vert + \bigl\vert f(\delta,0,0,\dots ,0) \bigr\vert \bigr] \\& \phantom{ \vert (\varTheta u) (t) \vert } \leq I_{q}^{\alpha}\bigl[ \bigl\vert \widetilde{f} \bigl(t, u(t) \bigr) - f(t,0,0,\dots,0) \bigr\vert + \bigl\vert f (t,0,0, \dots, 0) \bigr\vert \bigr] \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}+ \frac{ \vert a_{2} \vert }{ \vert a_{1} + a_{2} \vert } I_{q}^{\alpha}\bigl[ \bigl\vert \widetilde {f} \bigl(\delta, u(\delta) \bigr) -f(\delta, 0,0, \dots, 0) \bigr\vert + \bigl\vert f(\delta,0,0,\dots ,0) \bigr\vert \bigr] \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}+ \bigl\vert B_{2}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{1}} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}\times \bigl[ \bigl\vert \widetilde{f} \bigl(\delta, u(\delta) \bigr) -f( \delta,0,0, \dots, 0) \bigr\vert + \bigl\vert f(\delta, 0,0, \dots,0) \bigr\vert \bigr] \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}+ \bigl\vert B_{3}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{2}} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}\times \bigl[ \bigl\vert \widetilde{f} \bigl( \delta, u(\delta) \bigr) - f( \delta ,0,0, \dots,0) \bigr\vert + \bigl\vert f( \delta,0,0, \dots, 0) \bigr\vert \bigr] \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}+ \bigl\vert B_{3}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{3}} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}\times \bigl[ \bigl\vert \widetilde{f} \bigl(\delta, u(\delta) \bigr) -f( \delta,0,0, \dots,0) \bigr\vert + \bigl\vert f( \delta,0,0, \dots, 0) \bigr\vert \bigr] \\& \phantom{ \vert (\varTheta u) (t) \vert }\leq \Biggl[ \Biggl( \Biggl( \sum_{j=1}^{4} {}_{0}\eta_{j} \Biggr) + {}_{0}\eta _{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma_{11})} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq}+ {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0} \eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} +{}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} + \sum_{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr) r+ \eta_{0} +{}_{0}\eta_{5} \gamma_{1}^{0} \vartheta_{1} +{}_{0}\eta_{6} \gamma_{2}^{0} \vartheta_{2} \Biggr] \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} \times \biggl[ \frac{ ( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \delta^{ \alpha}}{ \vert a_{1} +a_{2} \vert \varGamma_{q}( \alpha+ 1)} + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q}( 2 -p_{1} ) \delta^{ \alpha}}{ \vert a_{1}+ a_{2} \vert \varGamma_{q}( \alpha- p_{1} +1)} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} + \frac{( \vert a_{2} \vert p_{1} + \vert a_{1} + a_{2} \vert ( 4- p_{1})) \varGamma_{q}( 3 - p_{2}) \delta^{\alpha}}{ 2 \vert a_{1}+ a_{2} \vert ( 2- p_{1}) \varGamma_{q}( \alpha- p_{2} +1)} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} + \frac{ \vert a_{2} \vert [ 6 (p_{2} - p_{1}) + ( 2 -p_{1})( 3 - p_{1}) p_{2}]\varGamma _{q}( 4 -p_{3}) \delta^{\alpha} }{ 6 \vert a_{1} +a_{2} \vert (2 -p_{1})( 3- p_{1})( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \\& \phantom{ \vert (\varTheta u) (t) \vert \leq} + \frac{ [ 6 (p_{2} -p_{1}) + (2 - p_{1})( 3 -p_{1})( 6- p_{2}) ] \varGamma _{q}( 4 -p_{3}) \delta^{\alpha} }{ 6 ( 2 - p_{1})( 3- p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr]. \end{aligned}$$
In a similar manner, we conclude that
$$\begin{aligned}& \bigl\vert (\varTheta u)'(t) \bigr\vert \leq \Biggl[ \Biggl( \Biggl( \sum_{j=1}^{4} {}_{0} \eta_{j} \Biggr) + {}_{0}\eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma _{11})} \\& \phantom{ \vert (\varTheta u)'(t) \vert \leq} + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0} \eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u)'(t) \vert \leq} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} +{}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\& \phantom{ \vert (\varTheta u)'(t) \vert \leq} + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\& \phantom{ \vert (\varTheta u)'(t) \vert \leq} + \sum_{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr) r + \eta_{0} +{}_{0}\eta_{5} \gamma_{1}^{0} \vartheta_{1} +{}_{0}\eta_{6} \gamma_{2}^{0} \vartheta_{2} \Biggr] \\& \phantom{ \vert (\varTheta u)'(t) \vert \leq} \times \biggl[ \frac{ \delta^{\alpha-1}}{ \varGamma_{q}( \alpha)} + \frac{ \varGamma_{q}( 2 -p_{1} ) \delta^{ \alpha-1}}{ \varGamma_{q}( \alpha- p_{1} +1)} + \frac{( 3- p_{1}) \varGamma_{q}( 3 - p_{2}) \delta^{\alpha-1 }}{ ( 2- p_{1}) \varGamma_{q}( \alpha- p_{2} +1)} \\& \phantom{ \vert (\varTheta u)'(t) \vert \leq} + \frac{ [ 2 (p_{2} -p_{1}) + (2 - p_{1})( 3 -p_{1})( 5- p_{2}) ] \varGamma _{q}( 4 -p_{3}) \delta^{\alpha-1 } }{ 2 ( 2 - p_{1})( 3- p_{1})( 3 -p_{2}) \varGamma _{q}( \alpha- p_{3} +1)} \biggr], \\& \bigl\vert (\varTheta u)''(t) \bigr\vert \leq \Biggl[ \Biggl( \Biggl( \sum_{j=1}^{4} {}_{0}\eta_{j} \Biggr) + {}_{0} \eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma _{11})} \\& \phantom{ \vert (\varTheta u)''(t) \vert \leq} + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0} \eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u)''(t) \vert \leq} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} +{}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\& \phantom{ \vert (\varTheta u)''(t) \vert \leq} + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\& \phantom{ \vert (\varTheta u)''(t) \vert \leq} + \sum_{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} \Biggr) r + \eta_{0} +{}_{0}\eta_{5} \gamma_{1}^{0} \vartheta_{1} +{}_{0} \eta_{6} \gamma _{2}^{0} \vartheta_{2} \Biggr] \\& \phantom{ \vert (\varTheta u)''(t) \vert \leq} \times \biggl[ \frac{ \delta^{\alpha-2}}{ \varGamma_{q}( \alpha-1 )} + \frac{ \varGamma_{q}( 3 -p_{2} ) \delta^{ \alpha-2}}{ \varGamma_{q}( \alpha- p_{2} + 1)} + \frac{ (4 - p_{2}) \varGamma_{q}( 4 -p_{3}) \delta^{\alpha-2 } }{ ( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr], \\& \bigl\vert (\varTheta u)'''(t) \bigr\vert \leq \Biggl[ \Biggl( \Biggl( \sum_{j=1}^{4} {}_{0}\eta _{j} \Biggr) + {}_{0} \eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma _{11})} \\& \phantom{ \vert (\varTheta u)'''(t) \vert \leq} + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0} \eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u)'''(t) \vert \leq} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} +{}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\& \phantom{ \vert (\varTheta u)'''(t) \vert \leq} + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\& \phantom{ \vert (\varTheta u)'''(t) \vert \leq} + \sum_{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} \Biggr) r + \eta_{0} +{}_{0}\eta_{5} \gamma_{1}^{0} \vartheta_{1} +{}_{0}\eta_{6} \gamma_{2}^{0} \vartheta_{2} \Biggr] \\& \phantom{ \vert (\varTheta u)'''(t) \vert \leq} \times \biggl[ \frac{ \delta^{\alpha-2}}{ \varGamma_{q}( \alpha-1 )} + \frac{ \varGamma_{q}( 3 -p_{2} ) \delta^{ \alpha-2}}{ \varGamma_{q}( \alpha- p_{2} + 1)} + \frac{ (4 - p_{2}) \varGamma_{q}( 4 -p_{3}) \delta^{\alpha-2 } }{ ( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr]. \end{aligned}$$
Therefore,
$$\begin{aligned} \Vert \varTheta u \Vert \leq{}& \Biggl[ \Biggl( \Biggl( \sum _{j=1}^{4} {}_{0}\eta_{j} \Biggr) + {}_{0}\eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma _{11})} \\ & + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0}\eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} +{}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum_{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\ & + \sum_{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 - \beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} \Biggr) r + \eta_{0} +{}_{0}\eta_{5} \gamma_{1}^{0} \vartheta_{1} +{}_{0}\eta_{6} \gamma_{2}^{0} \vartheta_{2} \Biggr] \varLambda_{1} \\ \leq{}& r. \end{aligned}$$
Indeed, \(\| \varTheta u\| \leq r\). On the other hand, we obtain
$$\begin{aligned} \bigl\vert (\varTheta u) (t) - (\varTheta v) (t) \bigr\vert \leq{}& I_{q}^{\alpha}\bigl[ \bigl\vert \widetilde {f} \bigl(t, u(t) \bigr) - \widetilde{f} \bigl(t, v(t) \bigr) \bigr\vert \bigr] \\ & + \frac{ \vert a_{2} \vert }{ \vert a_{1} + a_{2} \vert } I_{q}^{\alpha} \bigl[ \bigl\vert \widetilde {f} \bigl(\delta, u(\delta) \bigr) - \widetilde{f} \bigl( \delta, v( \delta) \bigr) \bigr\vert \bigr] \\ & + \bigl\vert B_{1}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{1}} \bigl[ \bigl\vert \widetilde {f} \bigl(\delta, u(\delta) \bigr) - \widetilde{f} \bigl(\delta, v(\delta) \bigr) \bigr\vert \bigr] \\ & + \bigl\vert B_{2}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{2}} \bigl[ \bigl\vert \widetilde {f} \bigl(\delta, u(\delta) \bigr) - \widetilde{f} \bigl( \delta, v (\delta) \bigr) \bigr\vert \bigr] \\ & + \bigl\vert B_{3}(t, \delta) \bigr\vert I_{q}^{\alpha-p_{3}} \bigl[ \bigl\vert \widetilde{f} \bigl(\delta , u(\delta) \bigr) - \widetilde{f} \bigl(\delta, v(\delta) \bigr) \bigr\vert \bigr] \\ \leq{}& \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{0}\eta_{j} \Biggr) + {}_{0} \eta_{5} \gamma _{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta ^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma_{11})} \\ & + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0}\eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j} } }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum_{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} + \sum _{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \\ & \times \biggl[ \frac{ ( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \delta^{ \alpha}}{ \vert a_{1} +a_{2} \vert \varGamma_{q}( \alpha+ 1)} + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q}( 2 -p_{1} ) \delta^{ \alpha}}{ \vert a_{1}+ a_{2} \vert \varGamma_{q}( \alpha- p_{1} +1)} \\ & + \frac{( \vert a_{2} \vert p_{1} + \vert a_{1} + a_{2} \vert ( 4- p_{1})) \varGamma_{q}( 3 - p_{2}) \delta^{\alpha}}{ 2 \vert a_{1}+ a_{2} \vert ( 2- p_{1}) \varGamma_{q}( \alpha- p_{2} +1)} \\ & + \frac{ \vert a_{2} \vert [ 6 (p_{2} - p_{1}) + ( 2 -p_{1})( 3 - p_{1}) p_{2}]\varGamma _{q}( 4 -p_{3}) \delta^{\alpha} }{ 6 \vert a_{1} +a_{2} \vert (2 -p_{1})( 3- p_{1})( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \\ & + \frac{ [ 6 (p_{2} -p_{1}) + (2 - p_{1})( 3 -p_{1})( 6- p_{2}) ] \varGamma _{q}( 4 -p_{3}) \delta^{\alpha} }{ 6 ( 2 - p_{1})( 3- p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr] \\ & \times \Vert u - v \Vert , \end{aligned}$$
for each \(t \in\overline{J}\) and each \(u, v \in\mathcal{X}\). By considering similar arguments, we obtain
$$\begin{aligned}& \bigl\vert (\varTheta u)' (t) - (\varTheta v)'(t) \bigr\vert \leq \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{0}\eta_{j} \Biggr) + {}_{0} \eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma_{11})} \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq }+ {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq }+ {}_{0}\eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{2}c_{j} \Biggr) + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq }+ {}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq } + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq } + \sum_{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \biggl[ \frac{ \delta^{ \alpha-1}}{ \varGamma_{q}( \alpha)} \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq }+ \frac{ \varGamma_{q}( 2 -p_{1} ) \delta^{ \alpha-1}}{ \varGamma_{q}( \alpha- p_{1} +1)}+ \frac{(3- p_{1}) \varGamma_{q}( 3 - p_{2}) \delta^{\alpha -1}}{ ( 2- p_{1}) \varGamma_{q}( \alpha- p_{2} +1)} \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq } + \frac{ \varGamma_{q}( 4 -p_{3}) \delta^{\alpha-1} }{2(2 -p_{1})( 3- p_{1})( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \\& \phantom{ \vert (\varTheta u)' (t) - (\varTheta v)'(t) \vert \leq } \times \bigl[ 2 (p_{2} - p_{1}) + ( 2 -p_{1}) ( 3 - p_{1}) (5-p_{2}) \bigr] \biggr] \Vert u - v \Vert , \\& \bigl\vert (\varTheta u)''(t) -(\varTheta v)''(t) \bigr\vert \leq \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{0} \eta_{j} \Biggr) + {}_{0}\eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u)''(t) -(\varTheta v)''(t) \vert \leq} + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 - \gamma _{12})} \\& \phantom{ \vert (\varTheta u)''(t) -(\varTheta v)''(t) \vert \leq} + {}_{1}c_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0}\eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{2}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u)''(t) -(\varTheta v)''(t) \vert \leq} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} \\& \phantom{ \vert (\varTheta u)''(t) -(\varTheta v)''(t) \vert \leq} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta _{1j} } }{ \varGamma_{q}( 2 -\beta_{1j})} \\& \phantom{ \vert (\varTheta u)''(t) -(\varTheta v)''(t) \vert \leq} + \sum_{j=1}^{k_{2}} {}_{2} \eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} + \sum _{j=1}^{k_{3}} {}_{3}\eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \\& \phantom{ \vert (\varTheta u)''(t) -(\varTheta v)''(t) \vert \leq} \times \biggl[ \frac{ \delta^{ \alpha-2}}{ \varGamma_{q}( \alpha-1 )} + \frac{ \varGamma_{q}( 2 -p_{2} ) \delta^{ \alpha-2}}{ \varGamma_{q}( \alpha- p_{2} +1)} \\& \phantom{ \vert (\varTheta u)''(t) -(\varTheta v)''(t) \vert \leq} + \frac{(4- p_{2}) \varGamma_{q}( 4 - p_{3}) \delta^{\alpha-2}}{ ( 3- p_{2}) \varGamma_{q}( \alpha- p_{3} +1)} \biggr] \Vert u - v \Vert , \\& \bigl\vert (\varTheta u)'''(t) - ( \varTheta v)'''(t) \bigr\vert \leq \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{0}\eta_{j} \Biggr) + {}_{0} \eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u)'''(t) - ( \varTheta v)'''(t) \vert \leq} + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 - \gamma _{12})} \\& \phantom{ \vert (\varTheta u)'''(t) - ( \varTheta v)'''(t) \vert \leq} + {}_{1}c_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0}\eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{2}c_{j} \Biggr) \\& \phantom{ \vert (\varTheta u)'''(t) - ( \varTheta v)'''(t) \vert \leq} + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} \\& \phantom{ \vert (\varTheta u)'''(t) - ( \varTheta v)'''(t) \vert \leq} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta _{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} \\& \phantom{ \vert (\varTheta u)'''(t) - ( \varTheta v)'''(t) \vert \leq} + \sum_{j=1}^{k_{2}} {}_{2} \eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} + \sum _{j=1}^{k_{3}} {}_{3}\eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \\& \phantom{ \vert (\varTheta u)'''(t) - ( \varTheta v)'''(t) \vert \leq} \times \biggl[ \frac{ \delta^{ \alpha-3}}{ \varGamma_{q}( \alpha-2 )} + \frac{ \varGamma_{q}( 4 -p_{3} ) \delta^{ \alpha-3}}{ \varGamma_{q}( \alpha- p_{3} +1)} \biggr] \Vert u - v \Vert , \end{aligned}$$
for each \(t \in\overline{J}\) and each \(u, v \in \mathcal{X}\). Hence, we conclude that
$$\begin{aligned} \Vert \varTheta u - \varTheta v \Vert \leq{}& \varLambda_{1} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{0} \eta_{j} \Biggr) + {}_{0} \eta_{5} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) + {}_{1}c_{5} \frac{\delta^{ 1 -\gamma_{11}}}{ \varGamma_{q}(2 - \gamma_{11})} \\ & + {}_{1}c_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 - \gamma _{13})} \Biggr) + {}_{0}\eta_{6} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 - \gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}(3 - \gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{ \varGamma_{q}( 4 - \gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} {}_{1} \eta_{j} \frac{\delta^{ 1 -\beta_{1j}} }{ \varGamma_{q}( 2 -\beta_{1j})} + \sum_{j=1}^{k_{2}} {}_{2}\eta_{j} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\ & + \sum_{j=1}^{k_{3}} {}_{3} \eta_{j} \frac{\delta^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \Vert u - v \Vert \\ ={}& \varLambda'_{1} \Vert u - v \Vert . \end{aligned}$$
Therefore, Θ is a contraction, because \(\varLambda'_{1} < 1\), and so, by employing the Banach contraction principle, Θ has a unique fixed point, which is a solution of problem (1). □

3.2 Positive solutions for inclusion problem (2)

In the second section of main results, we look into the positive solutions for the inclusion problem (2) with the antiperiodic boundary conditions (3), (4), and (5). Now, we recall some definitions and concepts which are needed in the sequel, and also we use the same definitions of the previous section. As one knows, a multivalued map \(T: \overline{J} \times\mathcal{R}^{m} \to P(\mathbb{R})\) is said to be Carathéodory whenever the map \(t \mapsto T(t, r_{1}, r_{2}, \dots, r_{m})\) is measurable and the map \((r_{1}, r_{2}, \dots, r_{m}) \mapsto T(t, r_{1},r_{2}, \dots, r_{m})\) is upper semicontinuous, and we say that a Carathéodory function T is \(L^{1}\)-Carathéodory whenever for each \(l>0\) there exists \(\varphi_{l} \in L^{1}(\overline{J}, \mathbb{R}^{+} )\) such that
$$\bigl\Vert T(t, r_{1}, r_{2}, \dots, r_{m}) \bigr\Vert _{p} = \sup \bigl\{ \vert s \vert : s\in T(t, r_{1}, r_{2}, \dots, r_{m}) \bigr\} \leq \psi_{l}(t), $$
where \(|r_{i}| \leq l\), for each \(r_{i}\in\mathbb{R}\) with \(i \in N_{m}\), each \(t\in\overline{J}\), respectively [29, 50]. One can find the following lemma in [31].
Lemma 7
The composite operator \(N \circ S_{G} : C (\overline{J}, \mathcal{A})\to P_{cp,c}( C (\overline{J}, \mathcal{A}))\) defined by \(N\circ S_{G}(r) = N(S_{G,r})\) is a closed-graph operator, whenever \(G: \overline{J} \times\mathcal{A} \to P_{cp,c}(\mathcal{A})\) is an \(L^{1}\)-Carathéodory multifunction and N is a linear continuous mapping from \(L^{1}(\overline{J},\mathcal{A})\) to \(C(\overline{J},\mathcal{A})\), where \(\mathcal{A}\) is a Banach space and \(S_{G,r} \) is the set of all \(w \in L^{1}(\overline{J},\mathcal{A})\) such that \(w(t)\in G( t, x(t))\) for each \(t\in\overline{J}\).
The multivalued map \(G: \overline{J}\times\mathcal{A}\to P_{cp}(\mathcal{A})\) is said to be of lower semicontinuous type whenever \(S_{G}: C(\overline{J}, \mathcal{A})\to P(L^{1}(\overline{J},\mathcal{A}))\) is lower semicontinuous and has nonempty closed and decomposable values [51]. Also, one can see the following lemma in [51].
Lemma 8
The lower semicontinuous multivalued map \(N: \mathcal{A}\to P(L^{1}(\overline{J}, \mathbb{R}))\) has a continuous selection, i.e., there exists a continuous mapping \(H: \mathcal{A} \to L^{1}(\overline{J}, \mathbb{R})\) such that \(H(a)\in N(a)\) for each \(a\in\mathcal{A}\), whenever N has closed decomposable values, where \(\mathcal{A}\) be a separable metric space.
Theorem 9
([53])
Suppose that \((\mathcal{A}, \rho)\) be a complete metric space. Then each contraction multivalued map \(T: \mathcal{A}\to P_{cl}(\mathcal{A})\) has a fixed point.
Theorem 10
([54])
Let \(\mathcal {C}\) be a closed and convex subset of a Banach space \(\mathcal{A}\) and \(\mathcal{O}\) be an open subset of \(\mathcal{C}\) such that \(0\in \mathcal{O}\). Then either T has a fixed point in \(\overline{\mathcal {O}}\) or there are \(a\in\partial\mathcal{O}\) and \(\kappa\in(0,1)\) such that \(a\in\kappa T(a)\), whenever \(T :\overline{\mathcal{O} } \to P_{cp,c}( \mathcal{C})\) is an upper semicontinuous compact map.
Theorem 11
If a multivalued map T mapping \(\overline{J} \times\mathcal{R}^{m} \) into \(P_{cp,c}(\mathbb{R})\) is Carathéodory, then problem (2) has at least one positive solution whenever the following assumptions are hold for each \(t, s \in\overline{J}\), \({}_{i}x_{j} \in \mathbb{R}\):
(1)
There exist positive real-valued and continuous nondecreasing functions \(\phi_{j_{0}}\) and \(\psi_{1j_{1}}\), \(\psi_{2j_{2}}\), \(\psi_{3j_{3}}\) defined on \([0, \infty)\) and nonnegative functions \(g_{0j_{0}}\), \(g_{1j_{1}}\), \(g_{2j_{2}}\), \(g_{3j_{3}}\) in \(L^{1}(\overline{J})\) such that
$$\begin{aligned}& \bigl\Vert T (t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{0}x_{6}, \\& \quad\quad{}_{1}x_{1}, {}_{1}x_{2}, \dots, {}_{1}x_{k_{1}}, {}_{2}x_{1}, {}_{2}x_{2}, \dots, {}_{2}x_{k_{2}}, {}_{3}x_{1}, {}_{3}x_{2}, \dots, {}_{3}x_{k_{3}}) \bigr\Vert _{p} \\& \quad = \sup \bigl\{ \vert x \vert : x \in T ( t, {}_{0}w_{1}, {}_{0}w_{2}, {}_{0}w_{3}, {}_{0}w_{4}, {}_{0}w_{5}, {}_{0}w_{6}, {}_{1}w_{1}, {}_{1}w_{2}, \dots, \\& \qquad {}_{1}w_{k_{1}}, {}_{2}w_{1}, {}_{2}w_{2}, \dots, {}_{2}w_{k_{2}}, {}_{3}w_{1}, {}_{3}w_{2}, \dots, {}_{3}w_{k_{3}}) \bigr\} \\& \quad \leq \sum_{j=1}^{6} g_{0j} (t) \phi_{j} \bigl( \vert {}_{0}x_{j} \vert \bigr) + \sum_{j=1}^{k_{1}} g_{1j}(t) \psi_{1j} \bigl( \vert {}_{1}x_{j} \vert \bigr) \\& \qquad{}+ \sum_{j=1}^{k_{2}} g_{2j}(t) \psi_{2j} \bigl( \vert {}_{2}x_{j} \vert \bigr) + \sum_{j=1}^{k_{3}} g_{3j}(t) \psi_{3j} \bigl( \vert {}_{3}x_{j} \vert \bigr), \end{aligned}$$
for \(j_{0}\), \(j_{1}\), \(j_{2}\) and \(j_{3}\) in \(N_{6}\), \(N_{k_{1}}\), \(N_{k_{2}}\), \(N_{k_{3}}\), respectively.
 
(2)
There exist constants \({}_{0}c_{1}\), \({}_{0}c_{2}\) in \((0, \infty)\) and \({}_{i}\eta_{j} \in[0, \infty)\) such that
$$\bigl\vert \theta_{i} (t, s, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}) \bigr\vert \leq{}_{0}c_{i} + \sum _{j=1}^{7} {}_{i} \eta_{j} \vert x_{j} \vert , $$
for each \(x_{i}\in\mathbb{R}\), where \(i=1,2\) and \(j \in N_{7}\).
 
(3)
There exists a constant \(\Delta>0\) such that \(\varLambda_{2} A(\Delta) < \Delta\), where
$$\begin{aligned} A (\Delta) = {}& \Biggl( \sum_{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(\Delta) \Biggr) \\ & + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + \Delta \gamma _{1}^{0} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\ & + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + \Delta \gamma _{2}^{0} \Biggl[ \Biggl(\sum _{j=1}^{4} {}_{2}\eta_{j} \Biggr) \\ & + {}_{2}\eta_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma_{21})} + {}_{2} \eta_{6} \frac{\delta^{ 2 -\gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2}\eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma _{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & + \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{ \delta ^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j})} \Delta \biggr) \\ & + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 -\beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Delta \biggr) \\ & + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Delta \biggr) , \end{aligned}$$
(16)
and
$$\begin{aligned} \varLambda_{2} ={}& \biggl[ \frac{ \vert a_{1} \vert + 2 \vert a_{2} \vert }{ \vert a_{1} + a_{2} \vert \varGamma_{q}( \alpha) } + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q}( 2 - p_{1})}{ \vert a_{1} + a_{2} \vert \varGamma_{q}(\alpha- p_{1})} \\ & + \frac{( \vert a_{2} \vert p_{1} + \vert a_{1} + a_{2} \vert ( 4 - p_{1})) \varGamma_{q} (3-p_{2})}{ 2 \vert a_{1} + a_{2} \vert ( 2 -p_{1}) \varGamma_{q}( \alpha- p_{2})} \\ & + \frac{ \vert a_{2} \vert [ 6 (p_{2} -p_{1}) + ( 2 -p_{1})( 3 -p_{1}) p_{2}]\varGamma_{q}( 4 -p_{3}) }{6 \vert a_{1} + a_{2} \vert ( 2 -p_{1})( 3 -p_{1}) ( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3})} \\ & + \frac{ [6 (p_{2} - p_{1}) + ( 2 - p_{1})( 3 -p_{1})( 6 -p_{2})] \varGamma _{q}( 4 -p_{3})}{ 6 ( 2 -p_{1})( 3- p_{1})( 3- p_{2}) \varGamma_{q}( \alpha- p_{3})} \biggr] \delta^{\alpha- 1} \\ & + \biggl[ \frac{1}{ \varGamma_{q}( \alpha- 1)} + \frac{ \varGamma_{q}( 2 -p_{1})}{ \varGamma_{q}( \alpha- p_{1}) } + \frac{ (3 - p_{1}) \varGamma_{q}( 3 -p_{2})}{( 2 -p_{1}) \varGamma_{q}( \alpha- p_{2})} \\ & + \frac{ [2 ( p_{2} -p_{1}) + (2 - p_{1})( 3 -p_{1})( 5- p_{2}) ] \varGamma _{q}( 4 - p_{3})}{ 2 ( 2 - p_{1})( 3 - p_{1})( 3-p_{2} ) \varGamma_{q}( \alpha-p_{3})} \biggr] \delta^{\alpha- 2} \\ & + \biggl[ \frac{1}{ \varGamma_{q}( \alpha- 2)} + \frac{ \varGamma_{q}( 3 -p_{2})}{ \varGamma_{q}( \alpha-p_{2})} + \frac{( 4 -p_{2}) \varGamma_{q}( 4 -p_{3})}{( 3 - p_{2}) \varGamma_{q}( \alpha- p_{3})} \biggr] \delta^{ \alpha- 3} \\ & + \biggl[ \frac{1}{ \varGamma_{q}( \alpha- 3)} + \frac{ \varGamma_{q}( 4 - p_{3})}{ \varGamma_{q}( \alpha- p_{3})} \biggr] \delta^{ \alpha- 4} . \end{aligned}$$
(17)
 
Proof
To begin, we define the set of selections of T for an arbitrary element \(u\in\mathcal{X}\) which contains all \(v \in L^{1}(\overline {J}, \mathbb{R})\) such that \(v(t)\) belongs to the multifunction \(\widetilde{T}(t, u(t))\) for each \(t\in\overline{J}\) and is denoted by \(S_{T, u}\), where
$$\begin{aligned} \widetilde{T} \bigl(t, u(t) \bigr)= {}&T \bigl( t, u(t), u'(t), u''(t), u'''(t), \varphi_{1} u(t), \varphi_{2} u(t), \\ & {}^{c}D_{q}^{\beta_{11}} u(t), {}^{c}D_{q}^{\beta_{12}} u(t), \dots, {}^{c}D_{q}^{\beta_{1k_{1}}} u(t), \\ & {}^{c}D_{q}^{\beta_{21}} u(t), {}^{c}D_{q}^{\beta_{22}} u(t), \dots, {}^{c}D_{q}^{\beta_{2k_{2}}} u(t), \\ & {}^{c}D_{q}^{ \beta_{31}} u(t), {}^{c}D_{q}^{\beta_{32}} u(t), \dots, {}^{c}D_{q}^{\beta_{3k_{3}}} u(t) \bigr). \end{aligned}$$
By considering the first property of the multifunction T and using Theorem 1.3.5 in [8], we know that \(S_{T,u}\) is nonempty. Defining an operator \(H: X \to P(X)\) on the set of all \(h \in X\) for which there exists \(v \in S_{T,u}\) such that \(h(t) = T_{v} (t)\) for \(t\in\overline{J}\) and denoting by \(H(x)\) where
$$\begin{aligned} T_{v}(t) ={}& I_{q}^{\alpha}v(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v(\delta) + B_{1}(t, \delta) _{q}^{\alpha- p_{1}} v(\delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v(\delta) - B_{3}(t, \delta) I_{q}^{\alpha- p_{3}} v(\delta), \end{aligned}$$
we claim that \(H(x)\) is convex for all \(u\in\mathcal{X}\). Assume that \(h_{1}, h_{2} \in H(x)\) and \(\tau\in[0,1]\). Choose \(v_{1}, v_{2}\in S_{T,u}\) such that
$$\begin{aligned} h_{i}(t) ={}& I_{q}^{\alpha}v_{i}(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v_{i}(\delta)+ B_{1}(t, \delta) _{q}^{\alpha- p_{1}} v_{i}( \delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v_{i}(\delta) - B_{3}(t, \delta ) I_{q}^{\alpha- p_{3}} v_{i}(\delta), \end{aligned}$$
for each t in . Then, we obtain
$$\begin{aligned} \bigl[\tau h_{1} + ( 1 - \tau) h_{2} \bigr] (t) ={}& I_{q}^{\alpha}\bigl[ \tau v_{1} (t) + (1 - \tau) v_{2} (t) \bigr] \\ & - \frac{a_{2}}{ a_{1} + a_{2}} I_{q}^{\alpha}\bigl[\tau v_{1} (\delta) + ( 1 -\tau) v_{2} (\delta) \bigr] \\ & + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} \bigl[\tau v_{1} (\delta) + ( 1 - \tau) v_{2}(\delta) \bigr] \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} \bigl[\tau v_{1}(\delta) + ( 1 -\tau) v_{2}(\delta) \bigr] \\ & - B_{3}(t, \delta) I_{q}^{\alpha-p_{3}} \bigl[\tau v_{1} (\delta) + ( 1 -\tau) v_{2} (\delta) \bigr]. \end{aligned}$$
Since T has convex values, by simple calculation, we can see that \(S_{T,u}\) is convex and so \(\tau h_{1} + ( 1 - \tau) h_{2} \in H(x)\). At present, we prove that H maps bounded sets into bounded sets in \(\mathcal{X}\). Suppose that \(B_{r}\) is the set of all \(u \in\mathcal{X}\) such that \(\|u\|\) is less than or equal to r, \(u \in B_{r}\) and \(h\in H(x)\). We select \(v \in S_{T,u}\) such that
$$\begin{aligned} \bigl\vert h(t) \bigr\vert \leq{}& I_{q}^{\alpha}v (t)- \frac{a_{2}}{ a_{1} + a_{2}} I_{q}^{\alpha}v (\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v (\delta) - B_{2}(t, \delta ) I_{q}^{\alpha- p_{2}} v(\delta) \\ & - B_{3}(t, \delta) I_{q}^{\alpha-p_{3}} v (\delta) \\ \leq{}& I_{q}^{\alpha}\Biggl[ g_{01} (t) \phi_{1} \bigl( \bigl\vert u(t) \bigr\vert \bigr) + g_{02} (t) \phi_{2} \bigl( \bigl\vert u'(t) \bigr\vert \bigr) + g_{03}(t) \phi_{3} \bigl( \bigl\vert u''(t) \bigr\vert \bigr) \\ & + g_{04}(t) \phi_{4} \bigl( \bigl\vert u'''(t) \bigr\vert \bigr) + g_{05}(t) \phi_{5} \bigl( \bigl\vert \varphi_{1} u(t) \bigr\vert \bigr) +g_{06}(t) \phi_{6} \bigl( \bigl\vert \varphi_{2} u(t) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{1}}g_{1j}(t) \psi_{1j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{1j}} u(t) \bigr\vert \bigr) + \sum_{j=1}^{k_{2}} g_{2j}(t) \psi_{2j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{2j}} u(t) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{3} } g_{3j}(t) \psi_{3j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{3j}} u(t) \bigr\vert \bigr) \Biggr] \\ & + \frac{ \vert a_{2} \vert }{ \vert a_{1} + a_{2} \vert } I_{q}^{\alpha}\Biggl[ g_{01} (\delta ) \phi_{1} \bigl( \bigl\vert u(\delta) \bigr\vert \bigr) + g_{02} (\delta) \phi_{2} \bigl( \bigl\vert u'(\delta) \bigr\vert \bigr) \\ & + g_{03}(\delta) \phi_{3} \bigl( \bigl\vert u''(\delta) \bigr\vert \bigr) + g_{04}( \delta) \phi_{4} \bigl( \bigl\vert u'''( \delta) \bigr\vert \bigr) \\ & + g_{05}(\delta) \phi_{5} \bigl( \bigl\vert \varphi_{1} u(\delta) \bigr\vert \bigr) + g_{06}(\delta ) \phi_{6} \bigl( \bigl\vert \varphi_{2} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{1}}g_{1j}( \delta) \psi_{1j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta _{1j}} u(\delta) \bigr\vert \bigr) + \sum_{j=1}^{k_{2}} g_{2j}(\delta) \psi_{2j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{2j}} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{3} } g_{3j}(t) \psi_{3j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{3j}} u(t) \bigr\vert \bigr) \Biggr] \\ & + \bigl\vert B_{1}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{1}} \Biggl[ g_{01} (\delta) \phi_{1} \bigl( \bigl\vert u( \delta) \bigr\vert \bigr) + g_{02} (\delta) \phi_{2} \bigl( \bigl\vert u'(\delta) \bigr\vert \bigr) \\ & + g_{03}(\delta) \phi_{3} \bigl( \bigl\vert u''(\delta) \bigr\vert \bigr) + g_{04}( \delta) \phi _{4} \bigl( \bigl\vert u'''( \delta) \bigr\vert \bigr) \\ & + g_{05}(\delta) \phi_{5} \bigl( \bigl\vert \varphi_{1} u(\delta) \bigr\vert \bigr) + g_{06}(\delta ) \phi_{6} \bigl( \bigl\vert \varphi_{2} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{1}}g_{1j}( \delta) \psi_{1j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta _{1j}} u(\delta) \bigr\vert \bigr) + \sum_{j=1}^{k_{2}} g_{2j}(\delta) \psi_{2j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{2j}} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{3} } g_{3j}(t) \psi_{3j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{3j}} u(t) \bigr\vert \bigr) \Biggr] \\ & + \bigl\vert B_{2}(t, \delta) \bigr\vert I_{q}^{\alpha- p_{2}} \Biggl[ g_{01} (\delta) \phi_{1} \bigl( \bigl\vert u( \delta) \bigr\vert \bigr) + g_{02} (\delta) \phi_{2} \bigl( \bigl\vert u'(\delta) \bigr\vert \bigr) \\ & + g_{03}(\delta) \phi_{3} \bigl( \bigl\vert u''(\delta) \bigr\vert \bigr) + g_{04}( \delta) \phi _{4} \bigl( \bigl\vert u'''( \delta) \bigr\vert \bigr) \\ & + g_{05}(\delta) \phi_{5} \bigl( \bigl\vert \varphi_{1} u(\delta) \bigr\vert \bigr) + g_{06}(\delta ) \phi_{6} \bigl( \bigl\vert \varphi_{2} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{1}}g_{1j}( \delta) \psi_{1j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta _{1j}} u(\delta) \bigr\vert \bigr) + \sum_{j=1}^{k_{2}} g_{2j}(\delta) \psi_{2j} \bigl( \bigl\vert {} ^{c}D_{q}^{\beta_{2j}} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{3} } g_{3j}(t) \psi_{3j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{3j}} u(t) \bigr\vert \bigr) \Biggr] \\ & + \bigl\vert B_{3}(t, \delta) \bigr\vert \Biggl[ g_{01} (\delta) \phi_{1} \bigl( \bigl\vert u(\delta) \bigr\vert \bigr) + g_{02} (\delta) \phi_{2} \bigl( \bigl\vert u'(\delta) \bigr\vert \bigr) \\ & + g_{03}(\delta) \phi_{3} \bigl( \bigl\vert u''(\delta) \bigr\vert \bigr) + g_{04}( \delta) \phi _{4} \bigl( \bigl\vert u'''( \delta) \bigr\vert \bigr) \\ & + g_{05}(\delta) \phi_{5} \bigl( \bigl\vert \varphi_{1} u(\delta) \bigr\vert \bigr) + g_{06}(\delta ) \phi_{6} \bigl( \bigl\vert \varphi_{2} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{1}}g_{1j}( \delta) \psi_{1j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta _{1j}} u(\delta) \bigr\vert \bigr) + \sum_{j=1}^{k_{2}} g_{2j}(\delta) \psi_{2j} \bigl( \bigl\vert {} ^{c}D_{q}^{\beta_{2j}} u(\delta) \bigr\vert \bigr) \\ & + \sum_{j=1}^{k_{3} } g_{3j}(t) \psi_{3j} \bigl( \bigl\vert {}^{c}D_{q}^{\beta_{3j}} u(t) \bigr\vert \bigr) \Biggr] \\ \leq{}& \Biggl[ \sum_{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(r) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\ & + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2}\eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma _{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\ & + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & + \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) \\ & + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\ & + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 - \beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \\ & \times \biggl[ \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \delta^{ \alpha- 1 }}{ \vert a_{1} + a_{2} \vert \varGamma_{q}( \alpha)} + \frac{( \vert a_{1} \vert + 2 \vert a_{2} \vert ) \varGamma_{q}( 2 - p_{1}) \delta^{ \alpha- 1}}{ \vert a_{1} + a_{2} \vert \varGamma_{q}( \alpha- p_{1})} \\ & + \frac{( \vert a_{2} \vert p_{1} + \vert a_{1}+ a_{2} \vert ( 4 - p_{1})) \varGamma_{q}( 3 - p_{2}) \delta^{ \alpha- 1}}{ 2 \vert a_{1} + a_{2} \vert ( 2 - p_{1}) \varGamma_{q}( \alpha- p_{2})} \\ & + \frac{ \vert a_{2} \vert [6 ( p_{2} - p_{1}) + ( 2 -p_{1}) ( 3 - p_{1}) p_{2}] \varGamma_{q}( 4 -p_{3}) \delta^{\alpha-1}}{ 6 \vert a_{1} + a_{2} \vert ( 2 - p_{1})( 3 - p_{1})( 3 - p_{2}) \varGamma_{q}( \alpha- p_{3})} \\ & + \frac{ [6 ( p_{2} - p_{1}) + ( 2 -p_{1})( 3 -p_{1})( 6 -p_{2}) ] \varGamma _{q}( 4 -p_{3}) \delta^{\alpha-1}}{ 6 ( 2 -p_{1})( 3 -p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3})} \biggr], \end{aligned}$$
(18)
for any \(t\in\overline{J}\). Thus, similarly as for inequality (18), we get
$$\begin{aligned}& \bigl\vert h'(t) \bigr\vert \leq \Biggl[ \sum _{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(r) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq}+ {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq} + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2}\eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma _{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq}+ {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq} + \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq} + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq} + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 - \beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq} \times \biggl[ \frac{\delta^{\alpha- 2}}{ \varGamma_{q}( \alpha- 1)} + \frac{ \varGamma_{q}( 2 -p_{1}) \delta^{ \alpha- 2}}{ \varGamma_{q}( \alpha-p_{1})} + \frac{ (3 - p_{1}) \varGamma_{q}( 3 -p_{2}) \delta^{ \alpha- 2}}{ ( 2- p_{1}) \varGamma_{q}( \alpha- p_{2})} \\& \phantom{\bigl\vert h'(t) \bigr\vert \leq} + \frac{ [ 2 (p_{2} -p_{1}) + ( 2 - p_{1}) ( 3- p_{1}) ( 5 - p_{2}) ] \varGamma_{q}( 4 - p_{3}) \delta^{ \alpha- 2}}{ 2 (2 - p_{1}) ( 3 - p_{1})( 3 -p_{2}) \varGamma_{q}( \alpha- p_{3})} \biggr], \end{aligned}$$
(19)
$$\begin{aligned}& \bigl\vert h''(t) \bigr\vert \leq \Biggl[ \sum _{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(r) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\& \phantom{\bigl\vert h''(t) \bigr\vert \leq}+ {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h''(t) \bigr\vert \leq}+ \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2}\eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma _{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\& \phantom{\bigl\vert h''(t) \bigr\vert \leq} + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h''(t) \bigr\vert \leq}+ \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) \\& \phantom{\bigl\vert h''(t) \bigr\vert \leq} + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\& \phantom{\bigl\vert h''(t) \bigr\vert \leq} + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 - \beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \\& \phantom{\bigl\vert h''(t) \bigr\vert \leq} \times \biggl[ \frac{ \delta^{\alpha- 3}}{ \varGamma_{q}( \alpha- 2)} + \frac{ \varGamma_{q}( 3 -p_{2})\delta^{\alpha- 3}}{\varGamma_{q}( \alpha-p_{2})} + \frac{ (4 - p_{2}) \varGamma_{q}( 4- p_{3}) \delta^{ \alpha- 3}}{( 3 -p_{2}) \varGamma_{q}( \alpha-p_{3})} \biggr], \end{aligned}$$
(20)
$$\begin{aligned}& \bigl\vert h'''(t) \bigr\vert \leq \Biggl[ \sum_{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(r) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\& \phantom{\bigl\vert h'''(t) \bigr\vert \leq}+ {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h'''(t) \bigr\vert \leq} + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2}\eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma _{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\& \phantom{\bigl\vert h'''(t) \bigr\vert \leq} + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h'''(t) \bigr\vert \leq}+ \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) \end{aligned}$$
(21)
$$\begin{aligned}& \phantom{\bigl\vert h'''(t) \bigr\vert \leq}+ \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\& \phantom{\bigl\vert h'''(t) \bigr\vert \leq}+ \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 - \beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \\& \phantom{\bigl\vert h'''(t) \bigr\vert \leq}\times \biggl[ \frac{\delta^{\alpha- 4}}{ \varGamma_{q}( \alpha- 3)} + \frac{ \varGamma_{q}( 4 -p_{3}) \delta^{\alpha- 4}}{ \varGamma_{q}( \alpha- p_{3})} \biggr] . \end{aligned}$$
(22)
Thus, from inequalities (18), (19), (20), and (22), we obtain
$$\begin{aligned} \Vert h \Vert \leq{}&\varLambda_{2} \Biggl[ \sum _{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(r) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\ & + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2}\eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma _{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\ & + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & + \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) \\ & + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta ^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\ & + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 - \beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr]. \end{aligned}$$
Thus, we conclude that H maps bounded sets into bounded sets in \(\mathcal{X}\). Let \(\tau_{1}, \tau_{2} \in\overline{J}\) with \(\tau_{1} < \tau_{2}\), \(u\in B_{r}\) and \(h\in H(x)\). Then, we have
$$\begin{aligned} \bigl\vert h(\tau_{2}) - h(\tau_{1}) \bigr\vert \leq{}& \frac{1}{ \varGamma_{q}( \alpha) } \int _{0}^{\tau_{1}} \bigl[(\tau_{2} - qs)^{( \alpha-1)} - (\tau_{1} -qs)^{(\alpha -1)} \bigr] \bigl\vert v(s) \bigr\vert \, d_{q}s \\ & + \frac{1}{ \varGamma_{q}( \alpha)} \int_{\tau_{1}}^{\tau_{2}} (\tau_{2} - qs)^{(\alpha-1)} \bigl\vert v(s) \bigr\vert \, d_{q}s \\ & + (\tau_{2} - \tau_{1})\delta^{p_{1}-1} \varGamma_{q}( 2 -p_{1}) I_{q}^{\alpha - p_{1}} \bigl\vert v(\delta) \bigr\vert \\ & + \frac{ [ 2 \delta( \tau_{2} -\tau_{1}) + ( 2 -p_{1}) ( \tau_{2}^{2} -\tau_{1}^{2} ) ] \varGamma_{q} ( 3 -p_{2}) \delta^{ p_{2}-2} }{ 2 ( 2 - p_{1}) } I_{q}^{\alpha- p_{2}} \bigl\vert v(\delta) \bigr\vert \\ & + \biggl( \frac{( p_{2} -p_{1}) \delta^{2} ( \tau_{2} -\tau_{1}) \varGamma_{q}( 4 -p_{3}) \delta^{p_{3}-3} }{ ( 2 - p_{1}) (3 - p_{1}) (3 -p_{2}) } \\ & + \frac{ (2 -p_{1})( 3 - p_{1}) \varGamma_{q}( 4 -p_{3}) \delta^{p_{3}-3} }{6 ( 2 - p_{1}) (3 - p_{1}) (3 -p_{2}) } \\ & \times \bigl[ 3\delta \bigl(\tau_{2}^{2} - \tau_{1}^{2} \bigr) + ( 3 -p_{2}) \bigl( \tau_{2}^{3} -\tau_{1}^{3} \bigr) \bigr] \biggr) I_{q}^{\alpha-p_{3} } \bigl\vert v(\delta) \bigr\vert \\ \leq{}& \Biggl[ \sum_{j=1}^{4} \phi_{j}(r) + \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\ & + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & + \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2} \eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma_{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\ & + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & + \sum_{j=1}^{k_{1}} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta _{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) + \sum_{j=1}^{k_{2}} \psi _{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\ & + \sum_{j=1}^{k_{3}} \psi_{3j} \biggl( \frac{ \delta^{ 3 - \beta _{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \\ & \times \Biggl[ \frac{1}{ \varGamma_{q}( \alpha)} \int_{0}^{\tau_{1}} \bigl[(\tau_{2} -qs)^{( \alpha- 1)} -(\tau_{1} -qs)^{(\alpha-1)} \bigr] \mathcal{G}(s)\, d_{q}s \\ & + \frac{1}{ \varGamma_{q}( \alpha) } \int_{\tau_{1}}^{\tau_{2}} (\tau_{2} - qs)^{(\alpha-1)} \mathcal{G}(s)\, d_{q}s \\ & + (\tau_{2} -\tau_{1}) \varGamma(2 -p_{1}) \delta^{p_{1}-1} I_{q}^{\alpha -p_{1}} \mathcal{G}(\delta) \\ & + \frac{ [ 2 \delta( \tau_{2} -\tau_{1}) + ( 2 -p_{1}) ( \tau_{2}^{2} -\tau_{1}^{2} ) ] \varGamma_{q} ( 3 -p_{2}) \delta^{ p_{2}-2} }{ 2 ( 2 - p_{1}) } I_{q}^{\alpha- p_{2}} \mathcal{G}(\delta) \\ & + \biggl( \frac{ ( p_{2} -p_{1}) \delta^{2} ( \tau_{2} -\tau_{1}) \varGamma _{q}( 4 -p_{3}) \delta^{p_{3}-3} }{ ( 2 - p_{1}) (3 - p_{1}) (3 -p_{2}) } \\ & + \frac{ (2 -p_{1})( 3 - p_{1})\varGamma_{q}( 4 -p_{3}) \delta^{p_{3}-3} }{6 ( 2 - p_{1}) (3 - p_{1}) (3 -p_{2}) } \\ & \times \bigl[ 3\delta \bigl(\tau_{2}^{2} - \tau_{1}^{2} \bigr) + ( 3 -p_{2}) \bigl(\tau _{2}^{3} -\tau_{1}^{3} \bigr) \bigr] \biggr) I_{q}^{\alpha-p_{3} } \mathcal{G}(\delta) \Biggr] , \end{aligned}$$
(23)
where
$$\begin{aligned} \mathcal{G}(z) &=\sum_{j=1}^{6} g_{0j} (z) + \sum_{j=1}^{k_{1}} g_{1j}(z) + \sum_{j=1}^{k_{2}} g_{2j} (z) + \sum_{j=1}^{k_{3}} g_{3j}(z). \end{aligned}$$
Similarly, from inequality (23), we have
$$\begin{aligned}& \bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq \Biggl[ \sum_{j=1}^{4} \phi_{j}(r) + \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq}+ {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq}+ {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} + \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2} \eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma_{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq}+ {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} + \sum_{j=1}^{k_{1}} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta _{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) + \sum_{j=1}^{k_{2}} \psi _{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} + \sum_{j=1}^{k_{3}} \psi_{3j} \biggl( \frac{ \delta^{ 3 - \beta _{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \biggl[ \frac {1}{\varGamma_{q}(\alpha- 1)} \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} \times \int_{0}^{\tau_{1}} \bigl[(\tau_{2} -qs)^{(\alpha-2)} - ( \tau_{1} -qs)^{(\alpha-2) } \bigr] \mathcal{G}(s)\, d_{q}s \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} + \frac{1}{\varGamma_{q}(\alpha-1)} \int_{\tau_{1}}^{\tau_{2}} (\tau_{2} - qs)^{(\alpha-2)} \mathcal{G}(s) \, d_{q}s \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} + (\tau_{2} - \tau_{1}) \varGamma_{q}( 3 -p_{2}) \delta^{ p_{2} -2 } I_{q}^{\alpha-p_{2}} \mathcal{G}(\delta) \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} + \frac{ \varGamma_{q}( 4 -p_{3}) \delta^{ p_{3}-3}}{ 2 (3 - p_{2}) } \\& \phantom{\bigl\vert h' (\tau_{2} ) - h' ( \tau_{1}) \bigr\vert \leq} \times \bigl[2 \delta(\tau_{2} -\tau_{1}) + (3 - p_{2}) \bigl( t_{2}^{2} -\tau _{1}^{2} \bigr) \bigr] I_{q}^{\alpha- p_{3}} \mathcal{G}(\delta) \biggr], \end{aligned}$$
(24)
$$\begin{aligned}& \bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq \Biggl[ \sum_{j=1}^{4} \phi_{j}(r) + \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2} \eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma_{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + \sum_{j=1}^{k_{1}} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta _{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) + \sum_{j=1}^{k_{2}} \psi _{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + \sum_{j=1}^{k_{3}} \psi_{3j} \biggl( \frac{ \delta^{ 3 - \beta _{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \biggl[ \frac {1}{\varGamma_{q}(\alpha- 1)} \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} \times \int_{0}^{\tau_{1}} \bigl[(\tau_{2} -qs)^{(\alpha-2)} - ( \tau_{1} -qs)^{(\alpha-2) } \bigr] \mathcal{G}(s) \, d_{q}s \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + \frac{1}{\varGamma_{q}(\alpha-2)} \int_{\tau_{1}}^{\tau_{2}} (\tau_{2} - qs)^{(\alpha-3)} \mathcal{G}(s) \, d_{q}s \\& \phantom{\bigl\vert h''(\tau_{2} ) - h''(\tau_{1}) \bigr\vert \leq} + (\tau_{2} - \tau_{1}) \varGamma_{q}( 4 -p_{3}) \delta^{ p_{3} -3 } I_{q}^{\alpha-p_{3}} \mathcal{G}(\delta) \biggr], \end{aligned}$$
(25)
$$\begin{aligned}& \bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq \Biggl[ \sum_{j=1}^{4} \phi_{j}(r) + \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + r \gamma_{1}^{0} \Biggl[ \Biggl( \sum_{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq}+ {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1}\eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma_{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq} + \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + r \gamma_{2}^{0} \Biggl[ \sum_{j=1}^{4} {}_{2} \eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma_{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq} + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq} + \sum_{j=1}^{k_{1}} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta _{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } r \biggr) + \sum_{j=1}^{k_{2}} \psi _{2j} \biggl( \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} r \biggr) \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq}+ \sum_{j=1}^{k_{3}} \psi_{3j} \biggl( \frac{ \delta^{ 3 - \beta _{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} r \biggr) \Biggr] \biggl[ \frac {1}{\varGamma_{q}(\alpha- 1)} \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq} \times \int_{0}^{\tau_{1}} \bigl[(\tau_{2} -qs)^{(\alpha-2)} - ( \tau_{1} -qs)^{(\alpha-2) } \bigr] \mathcal{G}(s) \, d_{q}s \\ & \phantom{\bigl\vert h'''(\tau_{2} ) -h'''(\tau_{1}) \bigr\vert \leq} + \frac{1}{\varGamma_{q}(\alpha-3)} \int_{\tau_{1}}^{\tau_{2}} (\tau_{2} - qs)^{(\alpha-4)} \mathcal{G}(\delta) \, d_{q}s \biggr]. \end{aligned}$$
(26)
Therefore, since \(u\in B_{r}\), when \(t_{2} - t_{1} \to0\), the above inequalities (23)–(26) tend to zero. Therefore, by employing Arzelà–Ascoli theorem, we get that \(H: \mathcal{X} \to P(\mathcal{X})\) is a compact multivalued map. Let \(u_{n} \to u^{*}\), \(h_{n} \in H(u_{n})\) for all n and \(h_{n}\to h^{*}\). We show that \(h^{*} \in H(u^{*})\). Since \(h_{n}\in H(u_{n})\) for all n, there exists \(v_{n} \in S_{T,u_{n}}\) such that
$$\begin{aligned} h_{n}(t) ={}& I_{q}^{\alpha}v_{n}(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v_{n}(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v_{n}( \delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v_{n}( \delta) - B_{3}(t, \delta ) I_{q}^{\alpha- p_{3}} v_{n}(\delta), \end{aligned}$$
for all \(t\in\overline{J}\). We claim that there exists \(v^{*} \) belonging to \(S_{T,u^{*}}\) such that
$$\begin{aligned} h^{*}(t) ={}& I_{q}^{\alpha}v^{*}(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v^{*}(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v^{*}(\delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v^{*}(\delta) - B_{3}(t, \delta ) I_{q}^{\alpha- p_{3}} v^{*}(\delta), \end{aligned}$$
for each t belonging to . In this case, we consider the linear operator \(\varOmega: L^{1}(\overline{J}, \mathbb{R})\to\mathcal{X}\) defined by \(v \mapsto\varOmega(v)(t)\), where Ω is continuous and
$$\begin{aligned} \begin{aligned} \varOmega(v) (t) ={}& I_{q}^{\alpha}v(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v(\delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v(\delta) - B_{3}(t, \delta) I_{q}^{\alpha- p_{3}} v(\delta),\end{aligned} \end{aligned}$$
for all t in . On the other hand, Ω is a linear continuous map and by applying Lemma 7, we obtain \(\varOmega \circ S_{T, u}\) is a closed-graph operator. Note that \(h_{n}\in\varOmega \circ S_{T, u_{n}}\) for all n. Since \(u_{n}\to u^{*}\) and \(h_{n}\to h^{*}\), there exists \(v^{*}\in S_{T, u^{*}}\) such that
$$\begin{aligned} h^{*}(t) ={}& I_{q}^{\alpha}v^{*}(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v^{*}(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v^{*}(\delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v^{*}(\delta) - B_{3}(t, \delta ) I_{q}^{\alpha- p_{3}} v^{*}(\delta). \end{aligned}$$
If \(0<\kappa<1\) and \(u\in\kappa H(x)\), then there exists \(v \in S_{T,u}\) such that
$$\begin{aligned} u(t) ={}& \kappa I_{q}^{\alpha}v(t) - \frac{a_{2}}{ a_{1}+ a_{2}} \kappa I_{q}^{\alpha}v(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v(\delta) \\ & - B_{2}(t, \delta) \kappa I_{q}^{\alpha- p_{2}} v( \delta) - B_{3}(t, \delta) \kappa I_{q}^{\alpha- p_{3}} v( \delta), \end{aligned}$$
for any \(t\in\overline{J}\). Hence,
$$\begin{aligned} \Vert u \Vert ={}& \sup_{t\in\overline{J}} \bigl\vert u(t) \bigr\vert + \sup_{t\in\overline{J}} \bigl\vert u'(t) \bigr\vert + \sup_{t\in\overline{J}} \bigl\vert u''(t) \bigr\vert + \sup_{t\in\overline{J}} \bigl\vert u'''(t) \bigr\vert \\ \leq{}&\varLambda_{2} \Biggl[ \sum_{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j} \bigl( \Vert u \Vert \bigr) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + \Vert u \Vert \gamma_{1}^{0} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{1} \eta_{j} \Biggr) \\ & + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 - \gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + \Vert u \Vert \gamma _{2}^{0} \Biggl[ \sum _{j=1}^{4} {}_{2}\eta_{j} + {}_{2}\eta_{5} \frac{\delta^{ 1 - \gamma_{21}}}{ \varGamma_{q}( 2 - \gamma_{21})} \\ & + {}_{2}\eta_{6} \frac{\delta^{ 2 - \gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2} \eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma_{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & + \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{\delta^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j}) } \Vert u \Vert \biggr) + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 - \beta _{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Vert u \Vert \biggr) \\ & + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 - \beta_{3j}}}{ \varGamma_{q}( 4 - \beta_{3j})} \Vert u \Vert \biggr) \Biggr] \\ = {}&\varLambda_{2} A \bigl( \Vert u \Vert \bigr). \end{aligned}$$
Indeed, \(\|u\| \leq\varLambda_{2} A(\|u\|)\). On the other hand, the operator \(\varPhi: \overline{D} \to P_{cp,c}(\mathcal{X})\) is upper semicontinuous and compact, where \(D = \{u\in\mathcal{X}: \| u\| < \Delta\}\). By considering the choice of D, there is no \(u\in \partial D\) such that \(u\in\kappa H(u)\) for some \(\kappa\in(0,1)\) and so H has a fixed point \(u\in\overline{D}\) due to Theorem 10. Therefore H satisfies the assumptions of the nonlinear alternative of the Leray–Schauder-type result. It is easy to check that each fixed point of H is a solution of problem (2). This completes the proof. □
In the next case we will show that convex-valued condition of T is not necessary.
Theorem 12
If T defined on \(\overline{J} \times\mathcal{R}^{m} \) to \(P_{cp,c}(\mathbb{R})\) is a multifunction such that the map \((t, x_{1}, x_{2}, \dots, x_{m})\mapsto T( t, x_{1}, x_{2}, \dots, x_{m})\) is both \(L(\overline{J} ) \otimes\mathcal{B}(R)\) measurable and lower semicontinuous for each \(t\in\overline{J}\) where \(m=6+k_{1}+k_{2}+k_{3}\) and \(\mathcal{B}(R) =\bigotimes_{j=1}^{m} B(\mathbb{R})\), then problem (2) has at least one positive solution whenever the assumptions (1), (2), and (3) in Theorem 11 hold.
Proof
By using the assumptions and Lemma 4.1 in [55], we conclude that T is lower semicontinuous. Also, Lemma 8 implies that there exists a continuous function \(N: \mathcal{X} \to L^{1}(\overline{J}, \mathbb{R})\) such that \(N(u) \in S_{T, u}\) for all \(u\in\mathcal{X}\). Now consider the problem
$$ {}^{c}D_{q}^{\alpha}u(t) =N(u) (t) $$
(27)
with the boundary conditions (23)–(26). Obviously, each solution of problem (27) is a solution of problem (2). Define the operator \(\overline{H}: \mathcal{X}\to\mathcal{X}\) by
$$\begin{aligned} \overline{H} u(t) = {}&I_{q}^{\alpha}N(u) (t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}N(u) (\delta)+ B_{1}(t, \delta) _{q}^{\alpha- p_{1}} N(u) (\delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} N(u) (\delta) - B_{3}(t, \delta) I_{q}^{\alpha- p_{3}} N(u) (\delta), \end{aligned}$$
for each \(t\in\overline{J}\). Similar to proof of the last result, it can be shown that is continuous, completely continuous, and satisfies all conditions of the nonlinear alternative of Leray–Schauder type for single-valued maps. Again by using a similar argument as for the last result, one can find a solution for problem (27). This completes the proof. □
Theorem 13
If a multivalued T mapping \(\overline{J} \times\mathcal{R}^{m} \) into \(P_{cp}(\mathbb{R})\) is measurable and bounded for each \(t\in\overline {J}\), then problem (2) has at least one solution whenever the following assumptions hold for each \(t, s \in\overline{J}\), \({}_{i}x_{j} , {}_{i}x'_{j} \in\mathbb{R}\):
(1)
There exist nonnegative functions \(m_{ij} \in L^{1}(\overline {J})\) such that
$$\begin{aligned}& d_{H} \bigl( T (t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{0}x_{6}, \\& \qquad {}_{1}x_{1}, {}_{1}x_{2}, \dots, {}_{1}x_{k_{1}}, {}_{2}x_{1}, {}_{2}x_{2}, \dots, {}_{2}x_{k_{2}}, {}_{3}x_{1}, {}_{3}x_{2}, \dots, {}_{3}x_{k_{3}}), \\& \qquad T \bigl(t, {}_{0}x'_{1}, {}_{0}x'_{2}, {}_{0}x'_{3}, {}_{0}x'_{4}, {}_{0}x'_{5}, {}_{0}x'_{6}, \\& \qquad {}_{1}x'_{1}, {}_{1}x'_{2}, \dots, {}_{1}x'_{k_{1}}, {}_{2}x'_{1}, {}_{2}x'_{2}, \dots, {}_{2}x'_{k_{2}}, {}_{3}x'_{1}, {}_{3}x'_{2}, \dots, {}_{3}x'_{k_{3}} \bigr) \bigr) \\& \quad \leq\sum_{j=1}^{6} m_{0j} (t) \bigl\vert {}_{0}x_{j} - {}_{0}x'_{j} \bigr\vert + \sum_{j=1}^{k_{1}} m_{1j}(t) \bigl\vert {}_{1}x_{j} - {}_{1}x'_{j} \bigr\vert \\& \qquad{} + \sum_{j=1}^{k_{2}} m_{2j}(t) \bigl\vert {}_{2}x_{j} - {}_{2}x'_{j} \bigr\vert + \sum_{j=1}^{k_{3}} m_{3j}(t) \bigl\vert {}_{3}x_{j} - {}_{3}x'_{j} \bigr\vert . \end{aligned}$$
 
(2)
There exist \({}_{i}c_{j}\geq0\) such that
$$\begin{aligned}& \bigl\vert \theta_{i} (t, s, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7})- \theta_{i} \bigl(t, s, x'_{1}, x'_{2}, x'_{3}, x'_{4}, x'_{5}, x'_{6}, x'_{7} \bigr) \bigr\vert \\& \quad\leq \sum_{j=1}^{7} {}_{i}c_{j} \bigl\vert x_{j} - x'_{j} \bigr\vert , \end{aligned}$$
for \(i=1,2\), \(x_{j}, x'j \in\mathbb{R}\) where \(j \in N_{7}\) and
$$\begin{aligned} \varLambda'_{2} ={}& \varLambda_{2} \Biggl[ \Biggl( \sum_{j=1}^{4} \bigl\Vert m_{0j} (t) \bigr\Vert _{1} \Biggr) + \bigl\Vert m_{05} (t) \bigr\Vert _{1} \gamma_{1}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Biggr) \\ & + {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{\varGamma_{q}(4 - \gamma _{13})} \Biggr) \\ & + \bigl\Vert m_{06} (t) \bigr\Vert _{1} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{1 - \gamma_{21}}}{\varGamma_{q}( 2 -\gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{\varGamma_{q}( 3 -\gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{\varGamma_{q}( 4 -\gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} \bigl\Vert m_{1j} (t) \bigr\Vert _{1} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} \bigl\Vert m_{2j} (t) \bigr\Vert _{1} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\ & + \sum_{j=1}^{k_{3}} \bigl\Vert m_{3j} (t) \bigr\Vert _{1} \frac{\delta^{ 3 -\beta _{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \\ < {}&1. \end{aligned}$$
 
Proof
By applying the hypothesis and Theorem III-6 (the measurable selection theorem in [52]), T admits a measurable selection \(v: \overline{J}\to\mathbb{R}\). Since T is integrable and bounded, \(v\in L^{1}(\overline{J}, \mathbb{R})\) and so \(S_{T,u} \neq \emptyset\) for each \(u\in\mathcal{X}\). We claim that the operator H satisfies the assumptions of Theorem 9. In this case, we prove that \(H(u)\in P_{cl}(\mathcal{X})\) for any \(u\in\mathcal{X}\). In this case, consider the sequence \(\{u_{n}\} \subset H(u)\) such that \(u_{n} \to u^{*}\) for some \(u^{*} \in\mathcal{X}\). For each n, choose \(w_{n} \in S_{T,u}\) such that
$$\begin{aligned} u_{n}(t) = {}&I_{q}^{\alpha}w_{n}(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}w_{n}(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} w_{n}( \delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} w_{n}( \delta) - B_{3}(t, \delta ) I_{q}^{\alpha- p_{3}} w_{n}(\delta), \end{aligned}$$
for all \(t\in\overline{I}\). Hence, there exists a subsequence of \(\{ w_{n}\}\) that converges to w in \(L^{1}(\overline{I}, \mathbb{R})\), because T has compact values. We denote this subsequence again by \(\{ w_{n}\}\). Thus, \(w\in S_{T,u}\) and \(u_{n}(t)\) tends to \(u^{*}(t)\), where
$$\begin{aligned} u^{*}(t) ={}& I_{q}^{\alpha}w(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}w(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} w(\delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} w(\delta) - B_{3}(t, \delta) I_{q}^{\alpha- p_{3}} w(\delta), \end{aligned}$$
for any \(t\in\overline{I}\). Indeed, \(u^{*}\in H(u)\). Now, we show that there exists \(\varLambda'_{2} < 1\) such that \(d_{H} (H(v), H(\tilde{v})) \leq \varLambda'_{2} \|v - \tilde{v}\|\), for all \(v, \tilde{v}\in\mathcal{X}\). Let \(v, \tilde{v}\in\mathcal{X}\) and \(h_{1}\in H(v)\). Choose \(v_{1} \) belonging to \(S_{T,v}\) such that
$$\begin{aligned} h_{1}(t) ={}& I_{q}^{\alpha}v_{1}(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v_{1}(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v_{1}( \delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v_{1}( \delta) - B_{3}(t, \delta ) I_{q}^{\alpha- p_{3}} v_{1}(\delta), \end{aligned}$$
for almost all \(t\in\overline{I}\). On the other hand, we get
$$\begin{aligned} d_{H} \bigl( \widetilde{T} \bigl(t, v(t) \bigr) , \widetilde{T} \bigl(t, \tilde{v}(t) \bigr) \bigr) \leq {}&\Biggl[ \Biggl( \sum _{j=1}^{4} \bigl\Vert m_{0j} (t) \bigr\Vert _{1} \Biggr) + \bigl\Vert m_{05} (t) \bigr\Vert _{1} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) \\ & + {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 - \gamma _{12})} \\ & + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{\varGamma_{q}(4 - \gamma _{13})} \Biggr) + \bigl\Vert m_{06} (t) \bigr\Vert _{1} \gamma_{2}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{1 - \gamma_{21}}}{\varGamma_{q}( 2 -\gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{\varGamma_{q}( 3 -\gamma _{22})} \\ & + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{\varGamma_{q}( 4 -\gamma _{23})} \Biggr) + \sum _{j=1}^{k_{1}} \bigl\Vert m_{1j} (t) \bigr\Vert _{1} \frac{\delta^{ 1 -\beta_{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} \\ & + \sum_{j=1}^{k_{2}} \bigl\Vert m_{2j} (t) \bigr\Vert _{1} \frac{\delta^{ 2 - \beta _{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\ & + \sum_{j=1}^{k_{3}} \bigl\Vert m_{3j} (t) \bigr\Vert _{1} \frac{\delta^{ 3 -\beta _{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \Vert v-\tilde{v} \Vert , \end{aligned}$$
for each \(t\in\overline{J}\). Hence, there exists \(f_{t}\in\widetilde {T}( t, \tilde{v}(t))\) such that \(|v_{1}(t) - f_{t}| < \varLambda'_{t}\), where
$$\begin{aligned} \varLambda'_{t} ={}& \Biggl[ \Biggl( \sum _{j=1}^{4} \bigl\Vert m_{0j} (t) \bigr\Vert _{1} \Biggr) + \bigl\Vert m_{05} (t) \bigr\Vert _{1} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) \\ & + {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{\varGamma_{q}(4 - \gamma _{13})} \Biggr) \\ & + \bigl\Vert m_{06} (t) \bigr\Vert _{1} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{1 - \gamma_{21}}}{\varGamma_{q}( 2 -\gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{\varGamma_{q}( 3 -\gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{\varGamma_{q}( 4 -\gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} \bigl\Vert m_{1j} (t) \bigr\Vert _{1} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} \bigl\Vert m_{2j} (t) \bigr\Vert _{1} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\ & + \sum_{j=1}^{k_{3}} \bigl\Vert m_{3j} (t) \bigr\Vert _{1} \frac{\delta^{ 3 -\beta _{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \Vert v-\tilde{v} \Vert , \end{aligned}$$
for almost all \(t\in\overline{J}\). Define \(N: \overline{J}\to P(\mathbb {R})\) by \(N(t)=\{ x \in\mathbb{R}: |v_{1}(t) - x| \leq\varLambda'_{t} \}\) for all \(t\in\overline{J}\). By employing Theorem III-41 in [52], we get that N is measurable. Since the multivalued operator \(t \mapsto N(t) \cap\widetilde{T} ( t, \tilde {v}(t) )\) is measurable (Proposition III-4 in [52]), there exists a function \(v_{2}\in S_{F,\tilde {z}}\) such that
$$\begin{aligned} \bigl\vert v_{1}(t) - v_{2}(t) \bigr\vert \leq {}&\Biggl[ \Biggl( \sum_{j=1}^{4} \bigl\Vert m_{0j} (t) \bigr\Vert _{1} \Biggr) + \bigl\Vert m_{05} (t) \bigr\Vert _{1} \gamma_{1}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Biggr) \\ & + {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{\varGamma_{q}(4 - \gamma _{13})} \Biggr) \\ & + \bigl\Vert m_{06} (t) \bigr\Vert _{1} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{1 - \gamma_{21}}}{\varGamma_{q}( 2 -\gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{\varGamma_{q}( 3 -\gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{\varGamma_{q}( 4 -\gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} \bigl\Vert m_{1j} (t) \bigr\Vert _{1} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} \bigl\Vert m_{2j} (t) \bigr\Vert _{1} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\ & + \sum_{j=1}^{k_{3}} \bigl\Vert m_{3j} (t) \bigr\Vert _{1} \frac{\delta^{ 3 -\beta _{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \Vert v-\tilde{v} \Vert , \end{aligned}$$
for almost all \(t\in\overline{J}\). Define
$$\begin{aligned} h_{2}(t) ={}& I_{q}^{\alpha}v_{2}(t) - \frac{a_{2}}{ a_{1}+ a_{2}} I_{q}^{\alpha}v_{2}(\delta) + B_{1}(t, \delta) I_{q}^{\alpha- p_{1}} v_{2}( \delta) \\ & - B_{2}(t, \delta) I_{q}^{\alpha- p_{2}} v_{2}( \delta) - B_{3}(t, \delta ) I_{q}^{\alpha- p_{3}} v_{2}(\delta), \end{aligned}$$
for all \(t\in\overline{J}\). Then, we have
$$\begin{aligned} \bigl\vert h_{1}(t) - h_{2}(t) \bigr\vert = {}&\sup _{t \in\overline{J}} \bigl\vert h_{1} (t) - h_{2}(t) \bigr\vert + \sup_{t \in\overline{J}} \bigl\vert h'_{1} (t) - h'_{2}(t) \bigr\vert \\ & + \sup_{t \in\overline{J}} \bigl\vert h''_{1} (t) - h''_{2}(t) \bigr\vert + \sup _{t \in\overline{J}} \bigl\vert h'''_{1} (t) - h'''_{2}(t) \bigr\vert \\ \leq {}&\varLambda_{2} \Biggl[ \Biggl( \sum _{j=1}^{4} \bigl\Vert m_{0j} (t) \bigr\Vert _{1} \Biggr) + \bigl\Vert m_{05} (t) \bigr\Vert _{1} \gamma_{1}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{1}c_{j} \Biggr) \\ & + {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 -\gamma_{13}}}{\varGamma_{q}(4 - \gamma _{13})} \Biggr) \\ & + \bigl\Vert m_{06} (t) \bigr\Vert _{1} \gamma_{2}^{0} \Biggl( \Biggl( \sum _{j=1}^{4} {}_{2}c_{j} \Biggr) \\ & + {}_{2}c_{5} \frac{\delta^{1 - \gamma_{21}}}{\varGamma_{q}( 2 -\gamma _{21})} + {}_{2}c_{6} \frac{\delta^{ 2 -\gamma_{22}}}{\varGamma_{q}( 3 -\gamma _{22})} + {}_{2}c_{7} \frac{\delta^{ 3 -\gamma_{23}}}{\varGamma_{q}( 4 -\gamma _{23})} \Biggr) \\ & + \sum_{j=1}^{k_{1}} \bigl\Vert m_{1j} (t) \bigr\Vert _{1} \frac{\delta^{ 1 -\beta _{1j}}}{ \varGamma_{q}( 2 -\beta_{1j})} + \sum _{j=1}^{k_{2}} \bigl\Vert m_{2j} (t) \bigr\Vert _{1} \frac{\delta^{ 2 - \beta_{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \\ & + \sum_{j=1}^{k_{3}} \bigl\Vert m_{3j} (t) \bigr\Vert _{1} \frac{\delta^{ 3 -\beta _{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Biggr] \Vert v-\tilde{v} \Vert \\ = {}&\varLambda'_{2} \Vert v-\tilde{v} \Vert . \end{aligned}$$
By interchanging the roles of v and , we get \(d_{H} (H(v), H(\tilde{v}) ) \leq \varLambda'_{2} \|v - \tilde{v}\|\). Since \(\varLambda'_{2} <1\), H is a contraction and so by using Theorem 9, H has a fixed point. It is easy to check that each fixed point of H is a solution of problem (2). □

4 Examples and numerical check technique for the problems

In this part, we give complete computational techniques for checking of the existence of solutions for the inclusion problem (1) in Theorems 11, 13, which cover all similar problems and present numerical examples for solving perfectly. Foremost, we show that a simplified analysis can be executed to calculate the value of q-Gamma function, \(\varGamma_{q} (x) \), for input values q and x by counting the number of sentences n in the summation. To this aim, we consider a pseudo-code description of the method for calculating q-Gamma function of order n in Algorithm 2 (for more details, see https://​en.​wikipedia.​org/​wiki/​Q-gamma_​function).
Table 1 shows that when q is constant, the q-Gamma function is an increasing function. Also, for smaller values of x, an approximate result is obtained with smaller values of n. It has been shown by underlined rows. Table 2 shows that the q-Gamma function for values of q near 1 is obtained with more values of n in comparison with other columns. They have been underlined in line 8 of the first column, line 17 of the second column, and line 29 of the third column of Table 2. Also, Table 3 is the same as Table 2, but x values increase in Table 3.
Table 1
Some numerical results for calculation of \(\varGamma_{q}(x)\) with \(q=\frac{1}{3}\) that is constant, \(x=4.5, 8.4, 12.7\) and \(n=1, 2, \ldots, 15\) of Algorithm 2
n
x = 4.5
x = 8.4
x = 12.7
n
x = 4.5
x = 8.4
x = 12.7
1
2.472950
11.909360
68.080769
9
2.340263
11.257158
64.351366
2
2.383247
11.468397
65.559266
10
2.340250
11.257095
64.351003
3
2.354446
11.326853
64.749894
11
2.340245
11.257074
64.350881
4
2.344963
11.280255
64.483434
12
2.340244
11.257066
64.350841
5
2.341815
11.264786
64.394980
13
2.340243
11.257064
64.350828
6
2.340767
11.259636
64.365536
14
2.340243
11.257063
64.350823
7
2.340418
11.257921
64.355725
15
2.340243
11.257063
64.350822
8
2.340301
11.257349
64.352456
    
Table 2
Some numerical results for calculation of \(\varGamma_{q}(x)\) with \(q=\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\), \(x=5\) and \(n=1, 2, \ldots, 35\) of Algorithm 2
n
\(q=\frac{1}{3}\)
\(q=\frac{1}{2}\)
\(q=\frac{2}{3}\)
n
\(q=\frac{1}{3}\)
\(q=\frac{1}{2}\)
\(q=\frac{2}{3}\)
1
3.016535
6.291859
18.937427
18
2.853224
4.921884
8.476643
2
2.906140
5.548726
14.154784
19
2.853224
4.921879
8.474597
3
2.870699
5.222330
11.819974
20
2.853224
4.921877
8.473234
4
2.859031
5.069033
10.537540
21
2.853224
4.921876
8.472325
5
2.855157
4.994707
9.782069
22
2.853224
4.921876
8.471719
6
2.853868
4.958107
9.317265
23
2.853224
4.921875
8.471315
7
2.853438
4.939945
9.023265
24
2.853224
4.921875
8.471046
8
2.853295
4.930899
8.833940
25
2.853224
4.921875
8.470866
9
2.853247
4.926384
8.710584
26
2.853224
4.921875
8.470747
10
2.853232
4.924129
8.629588
27
2.853224
4.921875
8.470667
11
2.853226
4.923002
8.576133
28
2.853224
4.921875
8.470614
12
2.853224
4.922438
8.540736
29
2.853224
4.921875
8.470578
13
2.853224
4.922157
8.517243
30
2.853224
4.921875
8.470555
14
2.853224
4.922016
8.501627
31
2.853224
4.921875
8.470539
15
2.853224
4.921945
8.491237
32
2.853224
4.921875
8.470529
16
2.853224
4.921910
8.484320
33
2.853224
4.921875
8.470522
17
2.853224
4.921893
8.479713
34
2.853224
4.921875
8.470517
Table 3
Some numerical results for calculation of \(\varGamma_{q}(x)\) with \(x=8.4\), \(q=\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\) and \(n=1, 2, \ldots, 40\) of Algorithm 2
n
\(q=\frac{1}{3}\)
\(q=\frac{1}{2}\)
\(q=\frac{2}{3}\)
n
\(q=\frac{1}{3}\)
\(q=\frac{1}{2}\)
\(q=\frac{2}{3}\)
1
11.909360
63.618604
664.767669
21
11.257063
49.065390
260.033372
2
11.468397
55.707508
474.800503
22
11.257063
49.065384
260.011354
3
11.326853
52.245122
384.795341
23
11.257063
49.065381
259.996678
4
11.280255
50.621828
336.326796
24
11.257063
49.065380
259.986893
5
11.264786
49.835472
308.146441
25
11.257063
49.065379
259.980371
6
11.259636
49.448420
290.958806
26
11.257063
49.065379
259.976023
7
11.257921
49.256401
280.150029
27
11.257063
49.065379
259.973124
8
11.257349
49.160766
273.216364
28
11.257063
49.065378
259.971192
9
11.257158
49.113041
268.710272
29
11.257063
49.065378
259.969903
10
11.257095
49.089202
265.756606
30
11.257063
49.065378
259.969044
11
11.257074
49.077288
263.809514
31
11.257063
49.065378
259.968472
12
11.257066
49.071333
262.521127
32
11.257063
49.065378
259.968090
13
11.257064
49.068355
261.666471
33
11.257063
49.065378
259.967836
14
11.257063
49.066867
261.098587
34
11.257063
49.065378
259.967666
15
11.257063
49.066123
260.720833
35
11.257063
49.065378
259.967553
16
11.257063
49.065751
260.469369
36
11.257063
49.065378
259.967478
17
11.257063
49.065564
260.301890
37
11.257063
49.065378
259.967427
18
11.257063
49.065471
260.190310
38
11.257063
49.065378
259.967394
19
11.257063
49.065425
260.115957
39
11.257063
49.065378
259.967371
20
11.257063
49.065402
260.066402
40
11.257063
49.065378
259.967357
Note that all routines are written in MATLAB software with the variable Digits set to 16 (This environment variable controls the number of digits in MATLAB) and work on a PC with 2.90 GHz of Core 2 CPU and 4 GB of RAM. Furthermore, we provided Algorithm 3 which calculates \((D_{q}^{\alpha}f) (x)\).
Here, we give two examples to illustrate the inclusion problems (2) in Theorems 11 and 13.
Example 1
Consider the fractional q-differential inclusion
$$ \begin{aligned} {}^{c}D_{q}^{\frac{16}{3}} u(t) \in{}& T \bigl( t, u(t), u'(t), u''(t), u'''(t), \varphi_{1} u(t), \\ & {}^{c}D_{q}^{\frac{3}{4}} u(t), {}^{c}D_{q}^{\frac{7}{5}} u(t), {}^{c}D_{q}^{\frac{5}{2} } u(t), {}^{c}D_{q}^{\frac{8}{3}} u(t) \bigr), \end{aligned} $$
(28)
for \(t\in\overline{J}= [0,1]\) (\(\delta=1\)), with the conditions \(u^{(4)} (0) =u^{(5)} (0)=0\), \(\frac{1}{4} u(0) + \frac{2}{3} u(1)=0\) and
$$\begin{aligned} {}^{c}D_{q}^{ \frac{1}{5} } u(0) = -{}^{c}D_{q}^{ \frac{1}{5} } u(1),\qquad {}^{c}D_{q}^{\frac{5}{3}} u(0) = - {}^{c}D_{q}^{ \frac{5}{3}} u(1), \quad\quad {}^{c}D_{q}^{ \frac{15}{7} } u(0) = - {}^{c}D_{q}^{ \frac{15}{7} } u(1), \end{aligned}$$
where
$$\begin{aligned} \varphi_{1} u(t) ={}& \int_{0}^{t} \frac{ e^{- ( s - t)/2} }{50} \biggl[ \frac{ e^{-2\pi t}}{ 8( 1+ t^{2})} + \frac{ 3 u(s) }{ 514 ( 1 + t ) ( 2 + \sin(u(s)) ) } \\ & + \frac{7e^{ - s t } u'(s)}{ 257 ( s^{2} + 4 ) } + \frac{ \sqrt[ 3]{ \pi} u'(s) u''(s)}{ 771 ( 1 + \vert u'(s) \vert )} + \frac{ 4 e^{ - \cos^{2} (u(s))} u'''(s)}{ 1285(s^{2} + 1)} \\ & + \frac{ \sin(u(s)) {}^{c}D_{q}^{\frac{1}{7}} u(s)}{ 1799 \sqrt{1 + \vert {}^{c}D_{q}^{ \frac{1}{7}} u(s) \vert + \vert {}^{c}D_{q}^{ \frac{11}{6}} u(s) \vert }} + \frac{ e^{ -2\pi} \cos^{2} (u(s)) {}^{c}D_{q}^{ \frac{11}{6}} u(s)}{ 2827 ( s^{2} + 2s+1)} \\ & + \frac{{}^{c}D_{q}^{ \frac{16}{7}} u(s)}{ 4626( 1 + \vert u'(s) \vert )} \biggr] \, ds. \end{aligned}$$
Put \(\alpha=\frac{16}{3} \in(5, 6]\), when \(n=6\),
$$ \beta_{ij} = \left [ \textstyle\begin{array}{c@{\quad}c} \frac{3}{4} & 0 \\ \frac{7}{5} & 0\\ \frac{5}{2} & \frac{8}{3} \end{array}\displaystyle \right ], \qquad p_{i} = \left [ \textstyle\begin{array}{c} \frac{1}{5} \\ \frac{5}{3} \\ \frac{15}{7} \end{array}\displaystyle \right ], \qquad \gamma_{1j} = \left [ \textstyle\begin{array}{c} \frac{1}{7} \\ \frac{11}{6} \\ \frac{16}{7} \end{array}\displaystyle \right ], $$
\({}_{0}c_{1} =\frac{10}{17} \in(0, \infty)\),
$$ {}_{1}\eta_{j} = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \frac{3}{514} & \frac{7}{1028} & \frac{\sqrt[3]{\pi}}{771} & \frac {4}{1285} & \frac{1}{1799} & \frac{e^{-2\pi}}{2827} & \frac{2}{4626} \end{array}\displaystyle \right ], $$
where each \({}_{1}\eta_{i} \) in \([0, \infty)\) and \(\gamma_{1}^{0} = \frac{\sqrt {e}-1}{25}\). Define the multifunction \(T: \overline{J} \times{\mathbb {R}}^{9}\to P(\mathbb{R})\) by
$$\begin{aligned} T ( t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{1}x_{1}, {}_{2}x_{1}, {}_{3}x_{1}, {}_{3}x_{2} ) & = \{ y \in\mathbb{R} : B_{1} \leq y \leq B_{2} \}, \end{aligned}$$
where
$$\begin{aligned}& \begin{aligned}B_{1} ={}&\frac{ \vert {}_{0}x_{1} \vert ^{3}}{ 4 ( 3 + \vert {}_{0}x_{1} \vert ^{3})} - \frac{e^{-\pi t}}{5} \sin^{2} ({}_{0}x_{2}) - \frac{ \vert {}_{0}x_{5} \vert }{13( 4 + \sin^{2} ({}_{0}x_{1}))^{2} } \\ & - \frac{9 \vert {}_{1}x_{1} \vert }{10 ( 4 + \vert {}_{1}x_{1} \vert )} - \frac{t^{3}}{9} \cos^{2} ({}_{2}x_{1}) -\frac{e^{-\pi t^{2}}}{ 81( t^{4} + 3)} \vert {}_{3}x_{1} \vert - \frac{t^{ \frac{1}{3}}}{ 20 (1+ \vert {}_{3}x_{2} \vert )},\end{aligned} \\ & \begin{aligned}B_{2} ={}& \frac{1}{3}e^{- \vert {}_{0}x_{1} \vert } + \frac{7e^{-\pi t^{2}}}{ 18( 1+ ({}_{0}x_{2})^{2} t )} + \frac{ \vert {}_{0}x_{4} \vert }{ 10(1 + \vert {}_{0}x_{4} \vert )} + \frac {t^{\frac{3}{2}} \vert {}_{0}x_{5} + \sin({}_{0}x_{5}) \vert }{ 119} \\ & + \frac{e^{-t}}{ t^{4}+2}\sin^{4} ({}_{1}x_{1}) + \frac{e^{- \frac{3}{2}t}}{ 5\sqrt{1+ \vert {}_{2}x_{1} \vert ^{ \frac {5}{2}}}} + \frac{t}{135(t^{2}+1)} \biggl\vert {}_{3}x_{1} + \frac{{}_{0}x_{3}}{ 1 + \vert {}_{0}x_{3} \vert } \biggr\vert \\ & + \frac{31 \vert {}_{3}x_{2} \vert ^{3}}{140 ( 1 + \vert {}_{3}x_{2} \vert ^{3} ) } + \frac{3}{2}.\end{aligned} \end{aligned}$$
On the other hand, we get
$$\begin{aligned}& \bigl\Vert T (t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{1}x_{1}, {}_{2}x_{1}, {}_{3}x_{1}, {}_{3}x_{2}) \bigr\Vert _{p} \\ & \quad = \sup \bigl\{ \vert v \vert : v \in T(t,{}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{1}x_{1}, {}_{2}x_{1}, {}_{3}x_{1}, {}_{3}x_{2}) \bigr\} \\ & \quad\leq\frac{4087}{1260} + \frac{1}{119} \bigl( \vert {}_{0}x_{5} \vert + 1 \bigr) + \frac {1}{135} \bigl( \vert {}_{3}x_{1} \vert + 1 \bigr), \end{aligned}$$
for all \(t\in\overline{J}\) and \({}_{i}x_{j} \in\mathbb{R}\). It is obvious that T has convex and compact values and is of Carathéodory type. Put \(g_{0j}(t)=1\) here \(j\in N_{5}\), \(\phi_{1}({}_{0}x_{1})= \frac{4}{5}\), \(\phi_{2}({}_{0}x_{2})= \frac{1}{2}\), \(\phi_{3}({}_{0}x_{3})= \frac{1}{5}\), \(\phi_{4}({}_{0}x_{4})= \frac{1}{2}\), \(\phi_{5}({}_{0}x_{5})= \frac{1}{119} ( |{}_{0}x_{5}|+1 )\), and
$$\begin{aligned} g_{ij}(t) & = \left [ \textstyle\begin{array}{c@{\quad}c} 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{array}\displaystyle \right ], \qquad \psi_{ij}({}_{i}x_{j}) = \left [ \textstyle\begin{array}{c@{\quad}c} \frac{8}{9} & 0 \\ \frac{1}{60} & 0 \\ \frac{1}{135} ( \vert {}_{i}x_{j} \vert +1 ) & \frac{31}{140} \end{array}\displaystyle \right ], \end{aligned}$$
for each \(t\in\overline{J}\) and \({}_{i}x_{j} \in\mathbb{R}\). Hence,
$$\begin{aligned}& \begin{gathered} \bigl\Vert T ( t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{1}x_{1}, {}_{2}x_{1}, {}_{3}x_{1}, {}_{3}x_{2} ) \bigr\Vert _{p} \\ \quad = \sup \bigl\{ \vert v \vert : v\in T(t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{1}x_{1}, {}_{2}x_{1}, {}_{3}x_{1}, {}_{3}x_{2}) \bigr\} \end{gathered} \\& \quad \leq \Biggl(\sum_{j=1}^{5} g_{0j}(t) \phi_{j} \bigl( \vert {}_{0}x_{j} \vert \bigr) \Biggr) + g_{11}(t) \psi_{11} \bigl( \vert {}_{1}x_{1} \vert \bigr) + g_{21}(t) \psi_{21} \bigl( \vert {}_{2}x_{1} \vert \bigr) \\& \qquad{} + g_{31}(t) \psi_{31} \bigl( \vert {}_{3}x_{1} \vert \bigr) + g_{32}(t) \psi_{32} \bigl( \vert {}_{3}x_{2} \vert \bigr) \end{aligned}$$
for all \(t\in\overline{J}\) and \({}_{i}x_{j}\in\mathbb{R}\). According to data values of problem (28), we have
$$\begin{aligned} \varLambda_{2} ={}& \frac{ 19}{11 \varGamma_{q}(\frac{16}{13} ) } + \frac{19 \varGamma _{q}(\frac{9}{5})}{11 \varGamma_{q}(\frac{77}{15})} + \frac{106\varGamma_{q} (\frac {4}{3})}{99 \varGamma_{q}(\frac{11}{3})} + \frac{215 \varGamma_{q}( \frac{13}{7}) }{693 \varGamma_{q}(\frac{67}{21})} + \frac{383 \varGamma_{q}(\frac{13}{7})}{504 \varGamma_{q}(6721)} \\ & + \frac{1}{ \varGamma_{q}( \frac{13}{3})} + \frac{ \varGamma_{q}( \frac {9}{5})}{ \varGamma_{q}( \frac{77}{15}) } + \frac{ 14 \varGamma_{q}( \frac {4}{3})}{3 \varGamma_{q}( \frac{11}{3})} + \frac{ 185 \varGamma_{q}( \frac {7}{4})}{ 126 \varGamma_{q}( \frac{67}{21})} \\ & + \frac{1}{ \varGamma_{q}(\frac{10}{3})} + \frac{\frac{4}{3}}{ \varGamma _{q}(\frac{11}{3})} + \frac{7 \varGamma_{q}(\frac{13}{7})}{4 \varGamma_{q}(\frac{67}{21} )} + \frac {1}{ \varGamma_{q}(\frac{7}{3})} + \frac{ \varGamma_{q}(\frac{13}{7})}{ \varGamma _{q}(\frac{67}{21})}. \end{aligned}$$
Table 4 shows the some numerical values of \(\varLambda_{2}\) from Eq. (17), for five examples of \(q \in \frac{1}{8}, \frac{1}{5}, \frac{1}{2}, \frac{3}{4}, \frac{8}{9} \) which yield 12.891036, 11.28628, 7.188979, 5.412507, 4.758008, respectively, which that have been shown by underlined rows. On the other hand,
$$\begin{aligned} A (\Delta) ={}& \Biggl( \sum_{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(\Delta) \Biggr) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + \Delta\gamma_{1}^{0} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\ & + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + \Delta \gamma _{2}^{0} \Biggl[ \Biggl(\sum _{j=1}^{4} {}_{2}\eta_{j} \Biggr) \\ & + {}_{2}\eta_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma_{21})} + {}_{2} \eta_{6} \frac{\delta^{ 2 -\gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2}\eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma _{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & + \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{ \delta ^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j})} \Delta \biggr) + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 -\beta _{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Delta \biggr) \\ & + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Delta \biggr). \end{aligned}$$
With the right choice for Δ from Eq. (16), the conditions of Theorem 11 hold and so problem (28) has at least one solution.
Table 4
Some numerical results of \(\varLambda_{2}\) in Example 1 for \(q \in \{ \frac{1}{8}, \frac{1}{5}, \frac{1}{2}, \frac{3}{4}, \frac{8}{9} \}\) which is given by Algorithm 5
n
\(\frac{1}{8}\)
\(\frac{1}{5}\)
\(\frac{1}{2}\)
\(\frac{3}{4}\)
\(\frac{8}{9}\)
1
12.877066
11.226759
6.254225
2.677980
0.916173
2
12.889290
11.274367
6.713328
3.270871
1.205723
3
12.890818
11.283897
6.949071
3.754125
1.490385
4
12.891009
11.285804
7.068503
4.138890
1.765248
5
12.891033
11.286185
7.128610
4.440300
2.027099
6
12.891036
11.286261
7.158762
4.673700
2.273948
7
12.891036
11.286277
7.173862
4.852932
2.504695
8
12.891036
11.286280
7.181419
4.989733
2.718900
9
12.891036
11.286280
7.185198
5.093679
2.916602
21
12.891036
11.286280
7.188978
5.402246
4.265943
22
12.891036
11.286280
7.188979
5.404810
4.319178
23
12.891036
11.286280
7.188979
5.406734
4.366798
54
12.891036
11.28628
7.188979
5.412506
4.747670
55
12.891036
11.28628
7.188979
5.412507
4.748823
56
12.891036
11.28628
7.188979
5.412507
4.749849
96
12.891036
11.28628
7.188979
5.412507
4.757986
97
12.891036
11.28628
7.188979
5.412507
4.757994
98
12.891036
11.28628
7.188979
5.412507
4.758001
99
12.891036
11.28628
7.188979
5.412507
4.758008
100
12.891036
11.28628
7.188979
5.412507
4.758013
Example 2
Consider the fractional differential inclusion
$$ \begin{aligned}[b] {}^{c}D_{q}^{\frac{16}{3}} u(t) \in{}& T \bigl(t, u(t), u'(t), u''(t), u'''(t),\varphi_{1} u(t), \\ & {}^{c}D_{q}^{\frac{1}{19}} u(t), {}^{c}D_{q}^{\frac{2}{15}} u(t), {}^{c}D_{q}^{\frac{20}{17}} u(t), {}^{c}D_{q}^{\frac{11}{5}} u(t) \bigr), \end{aligned} $$
(29)
for \(t\in[0,1]\), with boundary value conditions \(u^{(4)}(0) = u^{(5)}(0) =0\), \(u(0) - 3 u(1) =0\) and
$$\begin{aligned} & {}^{c}D_{q}^{\frac{3}{20}} u(0)= -{}^{c}D_{q}^{ \frac{3}{20}} u(1), \qquad {}^{c}D_{q}^{\frac{15}{14}} u(0)= - {}^{c}D_{q}^{\frac{15}{14}} u(1), \qquad {}^{c}D_{q}^{\frac{19}{9}} u(0) = - {}^{c}D_{q}^{ \frac{19}{9}} u(1), \end{aligned}$$
where
$$\begin{aligned} \varphi_{1} u(t) ={}& \int_{0}^{t} \frac{(s-t)^{2} e^{-(s-t)^{3}}}{ 1350} \biggl[ \frac{t^{3}\cos^{2} t}{ e^{\pi t}( 1 + t^{2})} + \frac{ \vert u(s) +u'(s) + {}^{c}D_{q}^{ \frac{1}{12}} u(s) \vert }{ 9416 \pi(1+ \vert u(s) + u'(s) + {}^{c}D_{q}^{ \frac{1}{12}} u(s) \vert )} \\ & + \frac{t^{3} \sin^{2} t \cos s}{ 759(36\sqrt{ \pi} + e^{3s})} \arctan \biggl( \frac{3}{2} + \frac{ \vert u''(s) + {}^{c}D_{q}^{ \frac{7}{4}} u(s) \vert }{ 1 + \vert u''(s) + {}^{c}D_{q}^{\frac{7}{4}} u(s) \vert } \biggr) \\ & + \frac{e^{st}}{ 8190(1 + e^{st})}\cos u'''(s) + \frac {s^{2} e^{ - \pi s^{3}} \vert {}^{c}D_{q}^{ \frac{41}{20}} u(s) \vert }{ ( 1200 + \arcsin ( \frac{1}{3} ) e^{3t^{2}} ) ( 1 + \vert {}^{c}D_{q}^{ \frac{41}{20}} u(s) \vert )} \biggr]\, ds. \end{aligned}$$
Put \(\alpha= \frac{16}{3}\),
$$\begin{aligned} \beta_{ij} & = \left [ \textstyle\begin{array}{c@{\quad}c} \frac{1}{19} & \frac{2}{15} \\ \frac{20}{17} & 0 \\ \frac{11}{5} & 0 \end{array}\displaystyle \right ], \qquad p_{j}=\left [ \textstyle\begin{array}{c} \frac{3}{20}\\ \frac{15}{14}\\ \frac{19}{9} \end{array}\displaystyle \right ], \qquad\gamma_{1j}=\left [ \textstyle\begin{array}{c} \frac{1}{12}\\ \frac{7}{4}\\ \frac{41}{20} \end{array}\displaystyle \right ], \end{aligned}$$
\(a_{1}=1\), \(a_{2}=-3\) (\(a_{1} + a_{2} \neq0\)), \(\gamma_{1}^{0}=\frac{e-1}{4050}\),
$$\begin{aligned} {}_{i}c_{j} =\left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \frac{1}{9416\pi} & \frac{1}{9416\pi} & \frac{1}{759(36\sqrt{\pi}+1)} &\frac{1}{8190} & \frac{1}{9416\pi} & \frac{1}{759(36\sqrt{\pi}+1)} & \frac{1}{1200+\arcsin(\frac{1}{3})} \end{array}\displaystyle \right ]. \end{aligned}$$
Define the multifunction \(T: [0,1] \times{\mathbb{R}}^{9}\to P(\mathbb {R})\) by
$$\begin{aligned}& \begin{gathered} T ( t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{1}x_{1}, {}_{1}x_{2}, {}_{2}x_{1}, {}_{3}x_{1} ) \\ \quad = \bigl[ Q_{1} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr), Q_{2} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) \bigr] \cup \bigl[ Q_{3} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr), Q_{4} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) \bigr] \\ \qquad{} \cup \bigl[ Q_{5} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr), Q_{6} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) \bigr],\end{gathered} \end{aligned}$$
for all \(t\in[0,1]\) and \({}_{i}x_{j} \in\mathbb{R}\), where
$$\begin{aligned}& \begin{aligned}Q_{1} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) ={}& {-}\frac{e^{-\pi t}}{ 1 +t^{2}} \\ & - \arctan \biggl( 1 + \frac{e^{t} \vert {}_{0}x_{1} +{}_{0}x_{2} + {}_{0}x_{3} + {}_{0}x_{4} \vert }{9600( \frac{1}{3} + e^{t})(1+ \vert {}_{0}x_{1} + {}_{0}x_{2} + {}_{0}x_{3} + {}_{0}x_{4} \vert )} \biggr),\end{aligned} \\& Q_{2} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) = \cos^{2} t, \\& Q_{3} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) = 7 + \frac{\sin\pi t}{ \sqrt{2 + t^{3}}}, \\& \begin{aligned}Q_{4} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) ={}& 20 \bigl( t^{3} + 1 \bigr) + \cos \biggl( t^{3} + \frac{e^{t} \vert {}_{1}x_{1} + {}_{1}x_{2} \vert }{ 8719 \pi( 1 + \vert {}_{1}x_{1} +{}_{1}x_{2} \vert )} \biggr) \\ & + \frac{ \vert {}_{2}x_{1} +{}_{3}x_{1} \vert }{ 5170(9 + t)^{4} ( 1 + \vert {}_{2}x_{1} +{}_{3}x_{1} \vert )},\end{aligned} \\& Q_{5} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) = \frac{3}{2}, \\& Q_{6} \bigl(t, {}_{i}x_{j}, {}_{i}x'_{j} \bigr) = \frac{ \vert {}_{0}x_{5} \vert }{ 7491( t + 25)^{5}( 1 + \vert {}_{0}x_{5} \vert )} + t^{2} + \frac{5}{2}. \end{aligned}$$
It is clear that T has compact values. From the above assumptions, we have
$$\begin{aligned}& d_{H} \bigl( T ( t, {}_{0}x_{1}, {}_{0}x_{2}, {}_{0}x_{3}, {}_{0}x_{4}, {}_{0}x_{5}, {}_{1}x_{1}, {}_{1}x_{2}, {}_{2}x_{1}, {}_{3}x_{1} ), \\& \qquad T \bigl(t, {}_{0}x'_{1}, {}_{0}x'_{2}, {}_{0}x'_{3}, {}_{0}x'_{4}, {}_{0}x'_{5}, {}_{1}x'_{1}, {}_{1}x'_{2}, {}_{2}x'_{1}, {}_{3}x'_{1} \bigr) \bigr) \\& \quad\leq\frac{e^{t}}{9600 ( \frac{1}{3} + e^{t} ) } \sum_{j=1}^{4} \bigl\vert {}_{0}x_{j} -{}_{0}x'_{j} \bigr\vert + \frac{1}{7491 ( t + 25)^{5}} \bigl\vert {}_{0}x_{5} -{}_{0}x'_{5} \bigr\vert \\& \qquad{} + \frac{e^{t}}{ 8719\pi} \bigl( \bigl\vert {}_{1}x_{1} - {}_{1}x'_{1} \bigr\vert + \bigl\vert {}_{1}x_{2} -{}_{1}x'_{2} \bigr\vert \bigr) \\& \qquad{} + \frac{1}{5170 ( 9 + t)^{4}} \bigl( \bigl\vert {}_{2}x_{1} - {}_{2}x'_{1} \bigr\vert + \bigl\vert {}_{3}x_{1} - {}_{3}x'_{1} \bigr\vert \bigr), \end{aligned}$$
for all \(t\in[0,1]\) and \({}_{i}x_{j} \in\mathbb{R}\). According to data values of problem (29), we have
$$\begin{aligned} \varLambda_{2} ={}& \frac{ 3}{ \varGamma_{q}( \frac{19}{3})} + \frac{3 \varGamma_{q}( \frac{27}{16})}{\varGamma_{q}( \frac{289}{48})}+ \frac{101 \varGamma_{q} (\frac {18}{11})}{ 81 \varGamma_{q}(\frac{194}{33})} + \frac{39{,}275 \varGamma_{q}(\frac {16}{9}) }{125{,}388 \varGamma_{q}(\frac{-275}{144})} + \frac{-13{,}817 \varGamma _{q}(\frac{16}{9})}{37{,}152 \varGamma_{q}(\frac{37}{9})} \\ & + \frac{1}{ \varGamma_{q}( \frac{16}{3})} + \frac{ \varGamma_{q}( \frac {27}{16})}{ \varGamma_{q}( \frac{299}{16}) } + \frac{ 43 \varGamma_{q}( \frac{18}{11})}{27 \varGamma_{q}( \frac{194}{33})} + \frac{430 \varGamma_{q}( \frac{16}{9})}{387 \varGamma_{q}( \frac{37}{9})} \\ & + \frac{1}{ \varGamma_{q}( \frac{13}{3})} + \frac{ \varGamma_{q}( \frac {18}{11})}{ \varGamma_{q}( \frac{164}{33})} + \frac{29\varGamma_{q}( \frac{16}{9})}{18 \varGamma_{q}(\frac{37}{9})} + \frac {1}{ \varGamma_{q}(\frac{10}{3})} + \frac{ \varGamma_{q}( \frac{16}{9})}{ \varGamma _{q}( \frac{37}{9})}. \end{aligned}$$
Table 5 shows the some numerical values of \(\varLambda_{2}\) from Eq. (17), for five examples of \(q =\frac{1}{8}, \frac {1}{5}, \frac{1}{2}, \frac{3}{4}, \frac{8}{9}\) that yield 15.400781, 11.914180, 4.521162, 2.316636, 1.704692, respectively, which have been shown by the underlined rows. Also
$$\begin{aligned} A (\Delta) ={}& \Biggl( \sum_{j=1}^{4} \Vert g_{0j} \Vert _{1} \phi_{j}(D) \Biggr) + \Vert g_{05} \Vert _{1} \phi_{5} \Biggl( {}_{0}c_{1} \gamma_{1}^{0} + \Delta \gamma_{1}^{0} \Biggl[ \Biggl( \sum _{j=1}^{4} {}_{1}\eta_{j} \Biggr) \\ & + {}_{1}\eta_{5} \frac{\delta^{ 1 - \gamma_{11}}}{ \varGamma_{q}( 2 -\gamma_{11})} + {}_{1} \eta_{6} \frac{\delta^{ 2 - \gamma_{12}}}{ \varGamma_{q}( 3 -\gamma_{12})} + {}_{1}\eta_{7} \frac{\delta^{ 3 -\gamma_{13}}}{ \varGamma _{q}( 4 -\gamma_{13})} \Biggr] \Biggr) \\ & + \Vert g_{06} \Vert _{1} \phi_{6} \Biggl( {}_{0}c_{2} \gamma_{2}^{0} + \Delta \gamma _{2}^{0} \Biggl[ \Biggl(\sum _{j=1}^{4} {}_{2}\eta_{j} \Biggr) \\ & + {}_{2}\eta_{5} \frac{\delta^{ 1 -\gamma_{21}}}{ \varGamma_{q}( 2 -\gamma_{21})} + {}_{2} \eta_{6} \frac{\delta^{ 2 -\gamma_{22}}}{ \varGamma_{q}( 3 -\gamma_{22})} + {}_{2}\eta_{7} \frac{\delta^{ 3 - \gamma_{23}}}{ \varGamma _{q}( 4 - \gamma_{23})} \Biggr] \Biggr) \\ & + \sum_{j=1}^{k_{1}} \Vert g_{1j} \Vert _{1} \psi_{1j} \biggl( \frac{ \delta ^{ 1 - \beta_{1j}}}{ \varGamma_{q}( 2 - \beta_{1j})} \Delta \biggr) + \sum_{j=1}^{k_{2}} \Vert g_{2j} \Vert _{1} \psi_{2j} \biggl( \frac{\delta^{ 2 -\beta _{2j}}}{ \varGamma_{q}( 3 -\beta_{2j})} \Delta \biggr) \\ & + \sum_{j=1}^{k_{3}} \Vert g_{3j} \Vert _{1} \psi_{3j} \biggl( \frac{ \delta ^{ 3 -\beta_{3j}}}{ \varGamma_{q}( 4 -\beta_{3j})} \Delta \biggr). \end{aligned}$$
Put
$$\begin{aligned}& m_{0j} (t) =\left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \frac{e^{t}}{9600 ( \frac{1}{3} + e^{t} )} & \frac{e^{t}}{9600 ( \frac{1}{3} + e^{t} )} & \frac{e^{t}}{9600 ( \frac{1}{3} + e^{t} )} & \frac{e^{t}}{9600 ( \frac{1}{3} + e^{t} )} & \frac{1}{7491 ( t + 25)^{5}} \end{array}\displaystyle \right ], \\& m_{ij}(t) = \left [ \textstyle\begin{array}{c@{\quad}c} \frac{e^{t}}{8719\pi} & \frac{e^{t}}{8719\pi} \\ \frac{1}{5170(9+t)^{4}} & 0 \\ \frac{1}{5170(9+t)^{4}} & 0 \end{array}\displaystyle \right ]. \end{aligned}$$
With the right choice Δ, we get
$$\begin{aligned} \varLambda'_{2}={}& \varLambda_{2} \Biggl[ \Biggl( \sum_{j=1}^{4} \bigl\Vert m_{0j} (t) \bigr\Vert _{1} \Biggr) + \bigl\Vert m_{05} (t) \bigr\Vert _{1} \gamma_{1}^{0} \Biggl( \Biggl( \sum_{j=1}^{4} {}_{1}c_{j} \Biggr) \\ & + {}_{1}c_{5} \frac{\delta^{1 - \gamma_{11}}}{\varGamma_{q}( 2 - \gamma _{11})} + {}_{1}c_{6} \frac{\delta^{2 -\gamma_{12}}}{\varGamma_{q}( 3 - \gamma _{12})} + {}_{1}c_{7} \frac{\delta^{ 3 - \gamma_{13}}}{\varGamma_{q}(4 - \gamma _{13})} \Biggr) \\ & + m_{11} (t)\|_{1} \frac{1}{ \varGamma_{q}( 2 - \beta_{11})} + m_{11} (t)\|_{1} \frac{1}{ \varGamma_{q}( 2 -\beta_{12})} \\ & + \bigl\Vert m_{21} (t)\bigr\| _{1} \frac{1}{ \varGamma_{q}( 3 -\beta_{21})} + \bigl\Vert m_{31} (t)\bigr\| _{1} \frac{1}{ \varGamma_{q}( 4 -\beta_{31})} \Biggr] \\ < {}&1. \end{aligned}$$
Now, by using Theorem 13, the inclusion problem (29) has at least one solution.
Table 5
Some numerical results of \(\varLambda_{2}\) in Example 2 for \(q \in \{ \frac{1}{8}, \frac{1}{5}, \frac{1}{2}, \frac{3}{4}, \frac{8}{9} \}\) which is given by Algorithm 5
n
\(\frac{1}{8}\)
\(\frac{1}{5}\)
\(\frac{1}{2}\)
\(\frac{3}{4}\)
\(\frac{8}{9}\)
1
15.383428
11.848048
3.825547
0.882238
0.148607
2
15.398612
11.900941
4.164294
1.159149
0.222799
3
15.400510
11.911531
4.340431
1.400094
0.304966
4
15.400747
11.913650
4.430219
1.600908
0.392048
5
15.400777
11.914074
4.475546
1.763441
0.481449
6
15.400781
11.914158
4.498318
1.892313
0.571048
7
15.400781
11.914175
4.509731
1.993005
0.659175
8
15.400781
11.914179
4.515444
2.070845
0.744560
9
15.400781
11.914179
4.518303
2.130552
0.826279
10
15.400781
11.914180
4.519733
2.176087
0.903699
11
15.400781
11.914180
4.520447
2.210667
0.976425
20
15.400781
11.91418
4.521161
2.308563
1.421107
21
15.400781
11.91418
4.521162
2.310579
1.450892
22
15.400781
11.91418
4.521162
2.312093
1.477722
50
15.400781
11.91418
4.521162
2.316635
1.695907
51
15.400781
11.91418
4.521162
2.316636
1.696882
52
15.400781
11.91418
4.521162
2.316636
1.697749
117
15.400781
11.91418
4.521162
2.316637
1.704691
118
15.400781
11.91418
4.521162
2.316637
1.704692
119
15.400781
11.91418
4.521162
2.316637
1.704692
120
15.400781
11.91418
4.521162
2.316637
1.704692

Availability of data and materials

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007) MathSciNetCrossRef Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007) MathSciNetCrossRef
3.
Zurück zum Zitat Stanković, M.S., Rajković, P.M., Marinković, S.D.: On q-fractional derivatives of Riemann–Liouville and Caputo type. arXiv:0909.0387 (2009) Stanković, M.S., Rajković, P.M., Marinković, S.D.: On q-fractional derivatives of Riemann–Liouville and Caputo type. arXiv:​0909.​0387 (2009)
4.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Philadelphia (1993) MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Philadelphia (1993) MATH
15.
Zurück zum Zitat Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107)(2), 119–134 (2016) MathSciNetMATH Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107)(2), 119–134 (2016) MathSciNetMATH
17.
Zurück zum Zitat Samei, M.E., Khalilzadeh Ranjbar, G.: Some theorems of existence of solutions for fractional hybrid q-difference inclusion. J. Adv. Math. Stud. 12(1), 63–76 (2019) Samei, M.E., Khalilzadeh Ranjbar, G.: Some theorems of existence of solutions for fractional hybrid q-difference inclusion. J. Adv. Math. Stud. 12(1), 63–76 (2019)
18.
Zurück zum Zitat Ferreira, R.A.C.: Nontrivials solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, Article ID 70 (2010) MathSciNet Ferreira, R.A.C.: Nontrivials solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, Article ID 70 (2010) MathSciNet
19.
Zurück zum Zitat Su, X., Zhang, S.: Solutions to boundary value problems for nonlinear differential equations of fractional order. Electron. J. Differ. Equ. 2009, Article ID 26 (2009) MathSciNetCrossRef Su, X., Zhang, S.: Solutions to boundary value problems for nonlinear differential equations of fractional order. Electron. J. Differ. Equ. 2009, Article ID 26 (2009) MathSciNetCrossRef
23.
Zurück zum Zitat Baleanu, D., Mousalou, A., Rezapour, S.: The extended fractional Caputo–Fabrizio derivative of order \(0 \leq \sigma< 1\) on \(c_{\mathbb{R}}[0,1]\) and the existence of solutions for two higher-order series-type differential equations. Adv. Differ. Equ. 2018, Article ID 255 (2018). https://doi.org/10.1186/s13662-018-1696-6 CrossRefMATH Baleanu, D., Mousalou, A., Rezapour, S.: The extended fractional Caputo–Fabrizio derivative of order \(0 \leq \sigma< 1\) on \(c_{\mathbb{R}}[0,1]\) and the existence of solutions for two higher-order series-type differential equations. Adv. Differ. Equ. 2018, Article ID 255 (2018). https://​doi.​org/​10.​1186/​s13662-018-1696-6 CrossRefMATH
31.
Zurück zum Zitat Lasota, A., Opial, Z.: An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13, 781–786 (1965) MathSciNetMATH Lasota, A., Opial, Z.: An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13, 781–786 (1965) MathSciNetMATH
36.
37.
Zurück zum Zitat Mason, T.E.: On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 37, 439–444 (1915) MathSciNetCrossRef Mason, T.E.: On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 37, 439–444 (1915) MathSciNetCrossRef
42.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) MATH
43.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATH
46.
Zurück zum Zitat Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditions. J. Adv. Math. Stud. 8(2), 265–285 (2015) MathSciNetMATH Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditions. J. Adv. Math. Stud. 8(2), 265–285 (2015) MathSciNetMATH
48.
Zurück zum Zitat Starcher, G.W.: On identities arising from solutions of q-difference equations and some interpretations in number theory. Ph.D. thesis, University of Illinois at Urbana-Champaign, Ann Arbor, MI (1930) Starcher, G.W.: On identities arising from solutions of q-difference equations and some interpretations in number theory. Ph.D. thesis, University of Illinois at Urbana-Champaign, Ann Arbor, MI (1930)
49.
Zurück zum Zitat Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Kluwer Academic, Norwell (1997) CrossRef Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Kluwer Academic, Norwell (1997) CrossRef
50.
Zurück zum Zitat Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic, Boston (1991) MATH Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic, Boston (1991) MATH
53.
Zurück zum Zitat Covitz, H., Nadler, S.: Multivalued contraction mappings in generalized metric spaces. Isr. J. Math. 8, 5–11 (1970) CrossRef Covitz, H., Nadler, S.: Multivalued contraction mappings in generalized metric spaces. Isr. J. Math. 8, 5–11 (1970) CrossRef
Metadaten
Titel
Existence of solutions for equations and inclusions of multiterm fractional q-integro-differential with nonseparated and initial boundary conditions
verfasst von
Mohammad Esmael Samei
Ghorban Khalilzadeh Ranjbar
Vahid Hedayati
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2224-2

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe