Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean

verfasst von: Wei-Mao Qian, Zai-Yin He, Hong-Wei Zhang, Yu-Ming Chu

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the article, we prove that \(\lambda _{1}=1/2+\sqrt{ [ (\sqrt{2}+ \log (1+\sqrt{2}) )/2 ]^{1/\nu }-1}/2\), \(\mu _{1}=1/2+\sqrt{6 \nu }/(12\nu )\), \(\lambda _{2}=1/2+\sqrt{ [(\pi +2)/4 ] ^{1/\nu }-1}/2\) and \(\mu _{2}=1/2+\sqrt{3\nu }/(6\nu )\) are the best possible parameters on the interval \([1/2, 1]\) such that the double inequalities
$$\begin{aligned}& C^{\nu }\bigl[\lambda _{1}x+(1-\lambda _{1})y, \lambda _{1}y+(1-\lambda _{1})x\bigr]A ^{1-\nu }(x, y) \\& \quad < \mathcal{R}_{QA}(x, y)< C^{\nu }\bigl[\mu _{1}x+(1-\mu _{1})y, \mu _{1}y+(1-\mu _{1})x\bigr]A^{1-\nu }(x, y), \\& C^{\nu }\bigl[\lambda _{2}x+(1-\lambda _{2})y, \lambda _{2}y+(1-\lambda _{2})x\bigr]A ^{1-\nu }(x, y) \\& \quad < \mathcal{R}_{AQ}(x, y)< C^{\nu }\bigl[\mu _{2}x+(1-\mu _{2})y, \mu _{2}y+(1-\mu _{2})x\bigr]A^{1-\nu }(x, y) \end{aligned}$$
hold for all \(x, y>0\) with \(x\neq y\) and \(\nu \in [1/2, \infty )\), where \(A(x, y)\) is the arithmetic mean, \(C(x, y)\) is the contraharmonic mean, and \(\mathcal{R}_{QA}(x, y)\) and \(\mathcal{R}_{AQ}(x, y)\) are two Neuman means.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(x, y>0\). Then the arithmetic mean \(A(x, y)\), quadratic mean \(Q(x, y)\) [1], contraharmonic mean \(C(x, y)\) [2, 3], and Schwab–Borchardt mean \(\operatorname{SB}(x, y)\) [4] are given by
$$ \begin{aligned} &A(x, y)=\frac{x+y}{2},\qquad Q(x, y)=\sqrt{\frac{x^{2}+y^{2}}{2}}, \qquad C(x, y)= \frac{x^{2}+y^{2}}{x+y}, \\ &\operatorname{SB}(x, y)= \textstyle\begin{cases} \frac{\sqrt{y^{2}-x^{2}}}{\arccos {(x/y)}}, & x< y, \\ x, & x=y, \\ \frac{\sqrt{x^{2}-y^{2}}}{\cosh ^{-1}{(x/y)}}, & x>y, \end{cases}\displaystyle \end{aligned} $$
(1.1)
respectively, where \(\cosh ^{-1}(\sigma )=\log (\sigma +\sqrt{\sigma ^{2}-1})\) is the inverse hyperbolic cosine function.
The Gaussian arithmetic–geometric mean \(\operatorname{AGM}(x, y)\) [57] of two positive real numbers x and y is defined by the common limit of the sequences \(\{x_{n}\}_{n=0}^{\infty }\) and \(\{y_{n}\}_{n=0}^{\infty }\), which are given by
$$ x_{0}=x,\qquad y_{0}=y, \qquad x_{n+1}=\frac{x_{n}+y_{n}}{2},\qquad y _{n+1}=\sqrt{x_{n}y_{n}}. $$
It is well known that the bivariate means have wide applications in mathematics, physics, engineering, and other natural sciences [855], many special functions can be expressed using bivariate means, for example, the complete elliptic integral
$$ \mathcal{K}(r)= \int _{0}^{\pi /2} \frac{dt}{\sqrt{1-r^{2}\sin ^{2}(t)}} \quad (0< r< 1) $$
of the first kind [5661] and the modulus \(\mu (r)\) of the plane Grötzsch ring [62, 63] can be expressed by the Gaussian arithmetic–geometric mean \(\operatorname{AGM}(x, y)\), the formula of the perimeter of an ellipse and the complete elliptic integral
$$ \mathcal{E}(r)= \int _{0}^{\pi /2}\sqrt{1-r^{2}\sin ^{2}(t)}\,dt $$
of the second kind [6470] can be given in terms of the Toader mean [7174]
$$ T(a,b)=\frac{2}{\pi } \int _{0}^{\pi /2}\sqrt{a^{2}\cos ^{2}(t)+b^{2} \sin ^{2}(t)}\,dt. $$
Indeed, we have
$$\begin{aligned}& \mathcal{K}(r)=\frac{\pi }{2}\frac{1}{\operatorname{AGM}(1, \sqrt{1-r^{2}})},\qquad \mu (r)=\frac{\pi }{2} \frac{\operatorname{AGM}(1, \sqrt{1-r^{2}})}{\operatorname{AGM}(1, r)}, \\& L(x, y)=2\pi T(x, y),\qquad \mathcal{E}(r)=\frac{\pi }{2}T \bigl(1, \sqrt{1-r ^{2}} \bigr). \end{aligned}$$
Recently, the inequalities for bivariate means have attracted the attention of many mathematicians. Neuman [75] introduced the Neuman means
$$\begin{aligned}& \mathcal{R}_{QA}(x, y)=\frac{1}{2} \biggl[Q(x, y)+ \frac{A^{2}(x, y)}{\operatorname{SB}(Q(x,y), A(x,y))} \biggr], \\& \mathcal{R}_{AQ}(x, y)=\frac{1}{2} \biggl[A(x, y)+ \frac{Q^{2}(x, y)}{\operatorname{SB}(A(x,y), Q(x,y))} \biggr] \end{aligned}$$
and provided the formulas
$$\begin{aligned}& \mathcal{R}_{QA}(x, y)=\frac{1}{2}A(x, y) \biggl[ \sqrt{1+u^{2}}+\frac{ \sinh ^{-1}(u)}{u} \biggr], \end{aligned}$$
(1.2)
$$\begin{aligned}& \mathcal{R}_{AQ}(x, y)=\frac{1}{2}A(x, y) \biggl[1+ \frac{(1+u^{2}) \arctan (u)}{u} \biggr] \end{aligned}$$
(1.3)
if \(x>y>0\), where \(u=(x-y)/(x+y)\) and \(\sinh ^{-1}(\sigma )=\log ( \sigma +\sqrt{\sigma ^{2}+1})\) is the inverse hyperbolic sine function. Neuman [4] proved that the inequalities
$$ A(x, y)< \mathcal{R}_{QA}(x, y)< \mathcal{R}_{AQ}(x, y)< Q(x, y) $$
(1.4)
hold for \(x, y>0\) with \(x\neq y\).
Zhang et al. [76] proved that \(\alpha _{1}=1/2+\sqrt{2\sqrt{2} \log (1+\sqrt{2})+\log ^{2}(1+\sqrt{2})-2}/4=0.7817\ldots \) , \(\beta _{1}=1/2+\sqrt{3}/6=0.7886\ldots \) , \(\alpha _{2}=1/2+\sqrt{\pi ^{2}+4\pi -12}/8=0.9038\ldots \) and \(\beta _{2}=1/2+\sqrt{6}/6=0.9082 \ldots \) are the best possible parameters on the interval \([1/2, 1]\) such that the double inequalities
$$\begin{aligned}& Q\bigl[\alpha _{1}x+(1-\alpha _{1})y, \alpha _{1}y+(1-\alpha _{1})x\bigr] \\& \quad < \mathcal{R}_{QA}(x, y)< Q\bigl[\beta _{1}x+(1-\beta _{1})y, \beta _{1}y+(1-\beta _{1})x\bigr], \end{aligned}$$
(1.5)
$$\begin{aligned}& Q\bigl[\alpha _{2}x+(1-\alpha _{2})y, \alpha _{2}y+(1-\alpha _{2})x\bigr] \\& \quad < \mathcal{R}_{AQ}(x, y)< Q\bigl[\beta _{2}x+(1-\beta _{2})y, \beta _{2}y+(1-\beta _{2})x\bigr] \end{aligned}$$
(1.6)
hold for \(x, y>0\) with \(x\neq y\).
In [77], Yang et al. proved that the double inequalities
$$\begin{aligned}& \alpha \biggl[\frac{C(x,y)}{3}+\frac{2A(x,y)}{3} \biggr]+(1-\alpha )C ^{1/3}(x, y)A^{2/3}(x, y) \\& \quad < \mathcal{R}_{AQ}(x, y)< \beta \biggl[\frac{C(x,y)}{3}+\frac{2A(x,y)}{3} \biggr]+(1-\beta )C ^{1/3}(x, y)A^{2/3}(x, y), \\& \lambda \biggl[\frac{C(x,y)}{6}+\frac{5A(x,y)}{6} \biggr]+(1-\lambda )C^{1/6}(x, y)A^{5/6}(x, y) \\& \quad < \mathcal{R}_{QA}(x, y)< \mu \biggl[\frac{C(x,y)}{6}+\frac{5A(x,y)}{6} \biggr]+(1-\mu )C^{1/6}(x, y)A^{5/6}(x, y) \end{aligned}$$
hold for for \(x, y>0\) with \(x\neq y\) if and only if \(\alpha \leq (3 \pi +6-12\sqrt[3]{2})/(16-12\sqrt[3]{2})=0.3470\ldots \) , \(\beta \geq 2/5\), \(\lambda \leq [3\sqrt{2}+3\log (1+\sqrt{2})-6 \sqrt[6]{2}]/(7-6\sqrt[6]{2})=0.5730\ldots \) and \(\mu \geq 16/25\).
The main purpose of the article is to generalize inequalities (1.5) and (1.6). To achieve this goal, we define the two-parameter contraharmonic and arithmetic mean \(W_{\lambda , \nu }(x, y)\) as follows:
$$ W_{\lambda , \nu }(x, y)=C^{\nu }\bigl[\lambda x+(1-\lambda )y, \lambda y+(1- \lambda )x\bigr]A^{1-\nu }(x, y), $$
(1.7)
where \(\lambda \in [1/2, 1]\) and \(\nu \in [1/2, \infty )\). We clearly see that the function \(\lambda \rightarrow W_{\lambda , \nu }(x, y)\) is strictly increasing on \([1/2, 1]\) for \(\nu \in [1/2, \infty )\) and \(x, y>0\) with \(x\neq y\).
It follows from (1.1), (1.4) and (1.7) that
$$\begin{aligned}& W_{\lambda , 1/2}(x, y)=Q\bigl[\lambda x+(1-\lambda )y, \lambda y+(1- \lambda )x \bigr], \end{aligned}$$
(1.8)
$$\begin{aligned}& W_{\lambda , 1}(x, y)=C\bigl[\lambda x+(1-\lambda )y, \lambda y+(1-\lambda )x \bigr], \end{aligned}$$
(1.9)
$$\begin{aligned}& W_{1/2, \nu }(x, y)=A(x, y), \\& W_{1, \nu }(x, y)=C^{\nu }(x, y)A^{1-\nu }(x, y)=A(x, y) \biggl[\frac{Q(x,y)}{A(x,y)} \biggr] ^{2\nu }\geq Q(x, y), \\& W_{1/2, \nu }(x, y)< \mathcal{R}_{QA}(x,y)< \mathcal{R}_{AQ}(x,y)< W_{1, \nu }(x, y). \end{aligned}$$
(1.10)
Inequalities (1.5), (1.6), and (1.10) give us the motivation to discuss the question: What are the best possible parameters \(\lambda _{1}= \lambda _{1}(\nu )\), \(\mu _{1}=\mu _{1}(\nu )\), \(\lambda _{2}=\lambda _{2}( \nu )\) and \(\mu _{2}=\mu _{2}(\nu )\) on the interval \([1/2, 1]\) such that the double inequalities
$$\begin{aligned}& W_{\lambda _{1}, \nu }(x,y)< \mathcal{R}_{QA}(x, y)< W_{\mu _{1}, \nu }(x,y), \\& W_{\lambda _{2}, \nu }(x,y)< \mathcal{R}_{AQ}(x, y)< W_{\mu _{2}, \nu }(x,y) \end{aligned}$$
hold for all \(x, y>0\) with \(x\neq y\) and \(\nu \in [1/2, \infty )\)?

2 Lemmas

In order to prove our main results, we need to introduce and establish five lemmas which we present in this section.
Lemma 2.1
([78, Theorem 1.25])
Let \(\alpha , \beta \in \mathbb{R}\) with \(\alpha <\beta \), \(\varGamma , \varPsi : [\alpha , \beta ]\rightarrow \mathbb{R}\) be continuous on \([\alpha , \beta ]\) and differentiable on \((\alpha , \beta )\) with \(\varPsi ^{\prime }(\tau )\neq 0\) on \((\alpha , \beta )\). Then the functions
$$ \frac{\varGamma (\tau )-\varGamma (\alpha )}{\varPsi (\tau )-\varPsi (\alpha )}, \qquad \frac{\varGamma (\tau )-\varGamma (\beta )}{\varPsi (\tau )-\varPsi (\beta )} $$
are (strictly) increasing (decreasing) on \((\alpha , \beta )\) if \(\varGamma ^{\prime }(\tau )/\varPsi ^{\prime }(\tau )\) is (strictly) increasing (decreasing) on \((\alpha , \beta )\).
Lemma 2.2
The function
$$ \phi (t)=\frac{\sqrt{1+t^{2}}\sinh ^{-1}(t)}{t} $$
is strictly increasing from \((0, 1)\) onto \((1, \sqrt{2}\log (1+ \sqrt{2}) )\).
Proof
Differentiating \(\phi (t)\) gives
$$ \phi '(t)=\frac{\phi _{1}(t)}{t\sqrt{1+t^{2}}}, $$
(2.1)
where
$$ \phi _{1}(t)=t\sqrt{1+t^{2}}-\sinh ^{-1}(t). $$
(2.2)
It follows from (2.2) that
$$\begin{aligned}& \phi _{1}\bigl(0^{+}\bigr)=0, \end{aligned}$$
(2.3)
$$\begin{aligned}& \phi _{1}'(t)=\frac{2t^{2}}{\sqrt{1+t^{2}}}>0 \end{aligned}$$
(2.4)
for all \(t\in (0, 1)\).
Note that
$$ \phi \bigl(0^{+}\bigr)=1,\qquad \phi \bigl(1^{-}\bigr)=\sqrt{2} \log (1+\sqrt{2}). $$
(2.5)
Therefore, Lemma 2.2 follows from (2.1) and (2.3)–(2.5). □
Lemma 2.3
The function
$$ \varphi (t)=\frac{t^{3}}{(1+t^{2})\arctan (t)-t} $$
is strictly increasing from \((0, 1)\) onto \((3/2, 2/(\pi -2) )\).
Proof
Let \(\varphi _{1}(t)=t^{3}\) and \(\varphi _{2}(t)=(1+t^{2})\arctan (t)-t\). Then we clearly see that
$$\begin{aligned}& \varphi _{1}\bigl(0^{+}\bigr)=\varphi _{2} \bigl(0^{+}\bigr),\qquad \varphi (t)=\frac{\varphi _{1}(t)}{\varphi _{2}(t)}, \end{aligned}$$
(2.6)
$$\begin{aligned}& \frac{\varphi '_{1}(t)}{\varphi '_{2}(t)}=\frac{3t}{2\arctan (t)}. \end{aligned}$$
(2.7)
It is not difficult to verify that the function \(t\mapsto t/\arctan (t)\) is strictly increasing from \((0, 1)\) onto \((1, 4/\pi )\). Then equation (2.7) leads to the conclusion that \(\varphi '_{1}(t)/\varphi '_{2}(t)\) is strictly increasing on \((0, 1)\).
Note that
$$ \varphi \bigl(0^{+}\bigr)=\frac{3}{2},\qquad \varphi \bigl(1^{-}\bigr)=\frac{2}{\pi -2}. $$
(2.8)
Therefore, Lemma 2.3 follows from Lemma 2.1, (2.6), (2.8), and the monotonicity of \(\varphi '_{1}(t)/\varphi '_{2}(t)\). □
Lemma 2.4
Let \(\theta \in [0, 1]\), \(\nu \in [1/2, \infty )\), \(t\in (0, 1)\) and
$$ f_{\theta , \nu }(t)=\nu \log \bigl(1+\theta t^{2}\bigr)-\log \bigl[t \sqrt{1+t ^{2}}+\sinh ^{-1}(t) \bigr]+\log t+\log 2. $$
(2.9)
Then we have the following two conclusions:
(1)
\(f_{\theta , \nu }(t)>0\) for all \(t\in (0, 1)\) if and only if \(\theta \geq 1/(6\nu )\);
 
(2)
\(f_{\theta , \nu }(t)<0\) for all \(t\in (0, 1)\) if and only if \(\theta \leq [(\sqrt{2}+\log (1+\sqrt{2}))/2 ]^{1/ \nu }-1\).
 
Proof
It follows from (2.9) that
$$\begin{aligned}& f_{\theta , \nu }\bigl(0^{+}\bigr)=0, \end{aligned}$$
(2.10)
$$\begin{aligned}& f_{\theta , \nu }\bigl(1^{-}\bigr)=\nu \log (1+\theta )-\log \bigl[ \sqrt{2}+ \log (1+\sqrt{2}) \bigr]+\log 2, \end{aligned}$$
(2.11)
$$\begin{aligned}& f^{\prime }_{\theta , \nu }(t)=\frac{t [(2\nu -1)(t\sqrt{1+t ^{2}}-\sinh ^{-1}(t)) +4\nu \sinh ^{-1}(t) ]}{(1+\theta t^{2}) [t\sqrt{1+t^{2}}+\sinh ^{-1}(t) ]} \bigl[\theta -f_{ \nu }(t) \bigr], \end{aligned}$$
(2.12)
where
$$ f_{\nu }(t)=\frac{t\sqrt{1+t^{2}}-\sinh ^{-1}(t)}{(2\nu -1)t^{2}[t\sqrt{1+t ^{2}}-\sinh ^{-1}(t)]+4\nu t^{2}\sinh ^{-1}(t)}. $$
Let \(\psi _{1}(t)=t\sqrt{1+t^{2}}-\sinh ^{-1}(t)\) and \(\psi _{2}(t)=(2 \nu -1)t^{2}[t\sqrt{1+t^{2}}-\sinh ^{-1}(t)]+4\nu t^{2}\sinh ^{-1}(t)\). Then
$$\begin{aligned}& \psi _{1}\bigl(0^{+}\bigr)=\psi _{2} \bigl(0^{+}\bigr)=0,\qquad f_{\nu }(t)=\frac{\psi _{1}(t)}{ \psi _{2}(t)}, \end{aligned}$$
(2.13)
$$\begin{aligned}& \frac{\psi '_{1}(t)}{\psi '_{2}(t)}=\frac{1}{(2\nu +1)\phi (t)+2(2 \nu -1)t^{2}+4\nu -1}, \end{aligned}$$
(2.14)
where \(\phi (t)\) is defined in Lemma 2.2.
Equation (2.14) and Lemma 2.2 imply that \(\psi '_{1}(t)/\psi '_{2}(t)\) is strictly decreasing on \((0, 1)\). Therefore, the conclusion that \(f_{\nu }(t)\) is strictly decreasing on \((0, 1)\) follows from Lemma 2.1 and (2.13), together with the monotonicity of \(\psi '_{1}(t)/\psi '_{2}(t)\) on the interval \((0, 1)\). Moreover, making use of L’Hôpital’s rule, we have that
$$\begin{aligned}& f_{\nu }\bigl(0^{+}\bigr)=\frac{1}{6\nu }, \end{aligned}$$
(2.15)
$$\begin{aligned}& f_{\nu }\bigl(1^{-}\bigr)=\frac{\sqrt{2}-\log (1+\sqrt{2})}{(2\nu -1) \sqrt{2}+(2\nu +1)\log (1+\sqrt{2})}=:\theta _{0}. \end{aligned}$$
(2.16)
We divide the proof into three cases.
Case 1. \(\theta \geq 1/(6\nu )\). Then (2.12) and (2.15), together with the monotonicity of \(f_{\nu }(t)\) on the interval \((0, 1)\), lead to the conclusion that \(f_{\theta , \nu }(t)\) is strictly increasing on \((0, 1)\). Therefore, \(f_{\theta , \nu }(t)>0\) for all \(t\in (0, 1)\) follows from (2.10) and the monotonicity of \(f_{\theta , \nu }(t)\) on the interval \((0, 1)\).
Case 2. \(\theta \leq \theta _{0}\). Then from (2.12) and (2.16), together with the monotonicity of \(f_{\nu }(t)\) on the interval \((0, 1)\), we clearly see that \(f_{\theta , \nu }(t)\) is strictly decreasing on \((0, 1)\). Therefore, \(f_{\theta , \nu }(t)<0\) for all \(t\in (0, 1)\) follows from (2.10) and the monotonicity of \(f_{\theta , \nu }(t)\) on the interval \((0, 1)\).
Case 3. \(\theta _{0}<\theta <1/(6\nu )\). Then from (2.12), (2.15), (2.16), and the monotonicity of \(f_{\nu }(t)\) on the interval \((0, 1)\), we clearly see that there exists \(t_{0}\in (0, 1)\) such that \(f_{\theta , \nu }(t)\) is strictly decreasing on \((0, t_{0})\) and strictly increasing on \((t_{0}, 1)\).
We divide the proof into two subcases.
Subcase 3.1. \([(\sqrt{2}+\log (1+\sqrt{2}))/2 ] ^{1/\nu }-1<\theta <1/(6\nu )\). Then (2.11) leads to
$$ f_{\theta , \nu }\bigl(1^{-}\bigr)>0. $$
(2.17)
Therefore, there exists \(t^{\ast }\in (t_{0}, 1)\) such that \(f_{\theta , \nu }(t)<0\) for \(t\in (0, t^{\ast })\) and \(f_{\theta , \nu }(t)>0\) for \(t\in (t^{\ast }, 1)\) follows from (2.10) and (2.17), together with the piecewise monotonicity of \(f_{\theta , \nu }(t)\) on the interval \((0, 1)\).
Subcase 3.2. \(\theta _{0}<\theta \leq [(\sqrt{2}+\log (1+ \sqrt{2}))/2 ]^{1/\nu }-1\). Then (2.11) leads to
$$ f_{\theta , \nu }\bigl(1^{-}\bigr)\leq 0. $$
(2.18)
Therefore, \(f_{\theta , \nu }(t)<0\) for all \(t\in (0, 1)\) follows from (2.10) and (2.18), together with the piecewise monotonicity of \(f_{\theta , \nu }(t)\) on the interval \((0, 1)\). □
Lemma 2.5
Let \(\vartheta \in [0, 1]\), \(\nu \in [1/2, \infty )\), \(t\in (0, 1)\) and
$$ g_{\vartheta , \nu }(t)=\nu \log \bigl(1+\vartheta t^{2}\bigr)-\log \bigl[t+\bigl(1+t ^{2}\bigr)\arctan (t) \bigr]+\log (t)+\log 2. $$
(2.19)
Then the following statements are true:
(1)
\(g_{\vartheta , \nu }(t)>0\) for all \(t\in (0, 1)\) if and only if \(\vartheta \geq 1/(3\nu )\);
 
(2)
\(g_{\vartheta , \nu }(t)<0\) for all \(t\in (0, 1)\) if and only if \(\vartheta \leq [(\pi +2)/4 ]^{1/\nu }-1\).
 
Proof
It follows from (2.19) that
$$\begin{aligned}& g_{\vartheta , \nu }\bigl(0^{+}\bigr)=0, \end{aligned}$$
(2.20)
$$\begin{aligned}& g_{\vartheta , \nu }\bigl(1^{-}\bigr)=\nu \log (1+\vartheta )-\log \biggl(\frac{ \pi +2}{4} \biggr), \end{aligned}$$
(2.21)
$$\begin{aligned}& g^{\prime }_{\vartheta , \nu }(t)=\frac{t [((2\nu -1)t^{2}+2 \nu +1)\arctan (t)+(2\nu -1)t ]}{(1+\vartheta t^{2}) [t+(1+t ^{2})\arctan (t) ]}\bigl[\vartheta -g_{\nu }(t)\bigr], \end{aligned}$$
(2.22)
where
$$ g_{\nu }(t)=\frac{t-(1-t^{2})\arctan (t)}{t^{2} [((2\nu -1)t^{2}+2 \nu +1)\arctan (t)+(2\nu -1)t ]}. $$
Let \(\omega _{1}(t)=[t-(1-t^{2})\arctan (t)]/t^{2}\) and \(\omega _{2}(t)=[(2 \nu -1)t^{2}+2\nu +1]\arctan (t)+(2\nu -1)t\). Then elaborate computations lead to
$$\begin{aligned}& \omega _{1}\bigl(0^{+}\bigr)=\omega _{2} \bigl(0^{+}\bigr)=0,\qquad g_{\nu }(t)=\frac{\omega _{1}(t)}{\omega _{2}(t)}, \end{aligned}$$
(2.23)
$$\begin{aligned}& \frac{\omega '_{1}(t)}{\omega '_{2}(t)}=\frac{1}{2[(2\nu -1)t^{2}+ \nu ]\varphi (t)+(2\nu -1)t^{4}} , \end{aligned}$$
(2.24)
where \(\varphi (t)\) is defined in Lemma 2.3.
From Lemma 2.3 and (2.24) we know that \(\omega '_{1}(t)/\omega '_{2}(t)\) is strictly decreasing on \((0, 1)\). Therefore, the conclusion that \(g_{\nu }(t)\) is strictly decreasing on \((0, 1)\) follows from Lemma 2.1 and (2.23), together with the monotonicity of \(\omega '_{1}(t)/\omega '_{2}(t)\) on the interval \((0, 1)\). Moreover, making use of L’Hôpital’s rule, we have that
$$\begin{aligned}& g_{\nu }\bigl(0^{+}\bigr)=\frac{1}{3v}, \end{aligned}$$
(2.25)
$$\begin{aligned}& g_{\nu }\bigl(1^{-}\bigr)=\frac{1}{(\pi +2)\nu -1}. \end{aligned}$$
(2.26)
We divide the proof into three cases.
Case 1. \(\vartheta \geq 1/(3\nu )\). Then (2.22) and (2.25), together with the monotonicity of \(g_{\nu }(t)\) on the interval \((0, 1)\), lead to the conclusion that \(g_{\vartheta , \nu }(t)\) is strictly increasing on \((0, 1)\). Therefore, \(g_{\vartheta , \nu }(t)>0\) for all \(t\in (0, 1)\) follows from (2.20) and the monotonicity of \(g_{\vartheta , \nu }(t)\) on the interval \((0, 1)\).
Case 2. \(\vartheta \leq 1/[(\pi +2)\nu -1]\). Then from (2.22) and (2.26), together with the monotonicity of \(g_{\nu }(t)\) on the interval \((0, 1)\), we clearly see that \(g_{\vartheta , \nu }(t)\) is strictly decreasing on \((0, 1)\). Therefore, \(g_{\vartheta , \nu }(t)<0\) for all \(t\in (0, 1)\) follows from (2.20) and the monotonicity of \(g_{\vartheta , \nu }(t)\) on the interval \((0, 1)\).
Case 3. \(1/[(\pi +2)\nu -1]<\vartheta <1/(6\nu )\). Then it follows from (2.22), (2.25), (2.26), and the monotonicity of \(g_{\nu }(t)\) on the interval \((0, 1)\) that there exists \(\rho _{0} \in (0, 1)\) such that \(g_{\vartheta , \nu }(t)\) is strictly decreasing on \((0, \rho _{0})\) and strictly increasing on \((\rho _{0}, 1)\).
We divide the proof into two subcases.
Subcase 3.1. \([(\pi +2)/4 ]^{1/\nu }-1<\vartheta <1/(6 \nu )\). Then (2.21) leads to
$$ g_{\vartheta , \nu }\bigl(1^{-}\bigr)>0. $$
(2.27)
Therefore, there exists \(\rho ^{\ast }\in (\rho _{0}, 1)\) such that \(g_{\vartheta , \nu }(t)<0\) for \(t\in (0, \rho ^{\ast })\) and \(g_{\vartheta , \nu }(t)>0\) for \(t\in (\rho ^{\ast }, 1)\) follows from (2.20) and (2.27), together with the piecewise of \(g_{\vartheta , \nu }(t)\) on the interval \((0, 1)\).
Subcase 3.2. \(1/[(\pi +2)\nu -1]<\vartheta \leq [(\pi +2)/4 ] ^{1/\nu }-1\). Then (2.21) gives
$$ g_{\vartheta , \nu }\bigl(1^{-}\bigr)\leq 0. $$
(2.28)
Therefore, \(g_{\vartheta , \nu }(t)<0\) for all \(t\in (0, 1)\) follows from (2.20) and (2.28), together with the piecewise of \(g_{\vartheta , \nu }(t)\) on the interval \((0, 1)\). □

3 Main results

Theorem 3.1
Let \(\lambda _{1}, \mu _{1}\in [1/2, 1]\) and \(\nu \in [1/2, \infty )\). Then the double inequality
$$ W_{\lambda _{1}, \nu }(x, y)< \mathcal{R}_{QA}(x, y)< W_{\mu _{1}, \nu }(x, y) $$
(3.1)
holds for all \(x, y>0\) with \(x\neq y\) if and only if \(\lambda _{1} \leq 1/2+\sqrt{ [ (\sqrt{2}+\log (1+\sqrt{2}) )/2 ] ^{1/\nu }-1}/2\) and \(\mu _{1}\geq 1/2+\sqrt{6\nu }/(12\nu )\).
Proof
Since both \(W_{\theta , \nu }(x, y)\) and \(\mathcal{R}_{QA}(x, y)\) are symmetric and homogenous of degree 1, without loss of generality, we assume that \(x>y>0\). Let \(t=(x-y)/(x+y)\in (0, 1)\) and \(\theta \in [1/2, 1]\). Then from (1.1), (1.2), and (1.7) we get
$$\begin{aligned}& \frac{W_{\theta , \nu }(x, y))}{A(x, y)}= \bigl[1+(2\theta -1)^{2}t ^{2} \bigr]^{\nu }, \end{aligned}$$
(3.2)
$$\begin{aligned}& \frac{\mathcal{R}_{QA}(x, y)}{A(x, y)}=\frac{1}{2} \biggl[\sqrt{1+t ^{2}}+ \frac{\sinh ^{-1}(t)}{t} \biggr]. \end{aligned}$$
(3.3)
It follows from (3.2) and (3.3) that
$$\begin{aligned} \log \biggl[\frac{W_{\theta , \nu }(x, y)}{\mathcal{R}_{QA}(x, y)} \biggr] =& \log \biggl[\frac{W_{\theta , \nu }(x, y)}{A(x, y)} \biggr]- \log \biggl[\frac{\mathcal{R}_{QA}(x, y)}{A(x, y)} \biggr] \\ =&\nu \log \bigl[1+(2\theta -1)^{2}t^{2} \bigr]-\log \bigl[t \sqrt{1+t ^{2}}+\sinh ^{-1}(t) \bigr] \\ &{}+\log (t)+\log 2. \end{aligned}$$
(3.4)
Therefore, Theorem 3.1 follows easily from Lemma 2.4 and (3.4). □
Theorem 3.2
Let \(\lambda _{2}, \mu _{2}\in [1/2, 1]\) and \(\nu \in [1/2, \infty )\). Then the double inequality
$$ W_{\lambda _{2}, \nu }(x, y)< \mathcal{R}_{AQ}(x, y)< W_{\mu _{2}, \nu }(x, y) $$
(3.5)
holds for all \(x, y>0\) with \(x\neq y\) if and only if \(\lambda _{2} \leq 1/2+\sqrt{ [(\pi +2)/4 ]^{1/\nu }-1}/2\) and \(\mu _{2}\geq 1/2+\sqrt{3\nu }/(6\nu )\).
Proof
Since both \(W_{\vartheta , \nu }(x, y)\) and \(\mathcal{R}_{AQ}(x, y)\) are symmetric and homogenous of degree 1, without loss of generality, we assume that \(x>y>0\). Let \(t=(x-y)/(x+y)\in (0, 1)\) and \(\vartheta \in [1/2, 1]\). Then it follows from (1.1), (1.3), and (1.7) that
$$\begin{aligned}& \frac{W_{\vartheta , \nu }(x, y))}{A(x, y)}= \bigl[1+(2\vartheta -1)^{2}t ^{2} \bigr]^{\nu }, \end{aligned}$$
(3.6)
$$\begin{aligned}& \frac{\mathcal{R}_{AQ}(x,y)}{A(x, y)}=\frac{1}{2} \biggl[1+\frac{(1+t ^{2})\arctan (t)}{t} \biggr]. \end{aligned}$$
(3.7)
From (3.6) and (3.7) we have
$$\begin{aligned} \log \biggl[\frac{W_{\vartheta , \nu }(x, y))}{\mathcal{R}_{AQ}(x,y)} \biggr] =& \log \biggl[\frac{W_{\vartheta , \nu }(x, y)}{A(x, y)} \biggr]- \log \biggl[\frac{\mathcal{R}_{AQ}(x,y)}{A(x,y)} \biggr] \\ =&\nu \log \bigl[1+(2\vartheta -1)^{2} t^{2} \bigr]-\log \bigl[t+\bigl(1+t ^{2}\bigr)\arctan (t) \bigr] \\ &{}+\log (t)+\log 2. \end{aligned}$$
(3.8)
Therefore, Theorem 3.2 follows easily from Lemma 2.5 and (3.8). □
Remark 3.3
Let \(\nu =1/2\). Then from (1.8) we clearly see that Theorems 3.1 and 3.2 become (1.5) and (1.6), respectively.
Let \(\nu =1\). Then from (1.9) and Theorems 3.1 and 3.2 we get Corollary 3.4 immediately.
Corollary 3.4
Let \(\lambda _{1}, \mu _{1}, \lambda _{2}, \mu _{2}\in [1/2, 1]\). Then the double inequalities
$$\begin{aligned}& C\bigl[\lambda _{1}x+(1-\lambda _{1})y, \lambda _{1}y+(1-\lambda _{1})x\bigr]< \mathcal{R}_{QA}(x, y)< C\bigl[\mu _{1}x+(1-\mu _{1})y, \mu _{1}y+(1- \mu _{1})x\bigr], \\& C\bigl[\lambda _{2}x+(1-\lambda _{2})y, \lambda _{2}y+(1-\lambda _{2})x\bigr]< \mathcal{R}_{AQ}(x, y)< C\bigl[\mu _{2}x+(1-\mu _{2})y, \mu _{2}y+(1-\mu _{2})x\bigr] \end{aligned}$$
hold for all \(x, y>0\) with \(x\neq y\) if and only if \(\lambda _{1} \leq 1/2+ \sqrt{ [ (\sqrt{2}+\log (1+\sqrt{2}) )/2 ]-1}/2=0.6922 \ldots \) , \(\mu _{1}\geq 1/2+\sqrt{6}/12=0.7041\ldots \) , \(\lambda _{2} \leq 1/2+\sqrt{ [(\pi +2)/4 ]-1}/2=0.7671\ldots \) and \(\mu _{2}\geq 1/2+\sqrt{3}/6=0.7886\ldots \) .
Let \(u\in (0, 1)\), \(x=1+u\), \(y=1-u\), \(\lambda _{1}=1/2+\sqrt{ [ (\sqrt{2}+ \log (1+\sqrt{2}) )/2 ]^{1/\nu }-1}/2\), \(\mu _{1}=1/2+\sqrt{6 \nu }/(12\nu )\), \(\lambda _{2}=1/2+\sqrt{ [(\pi +2)/4 ] ^{1/\nu }-1}/2\) and \(\mu _{2}=1/2+\sqrt{3\nu }/(6\nu )\). Then (1.2), (1.3), and Theorems 3.1 and 3.2 lead to Corollary 3.5.
Corollary 3.5
The double inequalities
$$\begin{aligned}& 2 \biggl[\bigl(1-u^{2}\bigr)+ \biggl(\frac{\sqrt{2}+\log (1+\sqrt{2})}{2} \biggr) ^{1/\nu }u^{2} \biggr]^{\nu }-\sqrt{1+u^{2}} \\& \quad < \frac{\sinh ^{-1}(u)}{u}< 2 \biggl(1+\frac{u^{2}}{6\nu } \biggr)^{ \nu }- \sqrt{1+u^{2}}, \\& \frac{2 [ (1-u^{2} )+(\frac{2+\pi }{4})^{1/\nu }u^{2} ] ^{\nu }-1}{1+u^{2}}< \frac{\arctan (u)}{u}< \frac{2 (1+\frac{1}{3 \nu }u^{2} )^{\nu }-1}{1+u^{2}} \end{aligned}$$
hold for all \(u\in (0, 1)\) and \(\nu \in [1/2, \infty )\).

4 Results and discussion

In the article, we give the sharp bounds for the Neuman means
$$ \mathcal{R}_{QA}(x, y)=\frac{1}{2} \biggl[Q(x, y)+ \frac{A^{2}(x, y)}{\operatorname{SB}(Q(x,y), A(x,y))} \biggr] $$
and
$$ \mathcal{R}_{AQ}(x, y)=\frac{1}{2} \biggl[A(x, y)+ \frac{Q^{2}(x, y)}{\operatorname{SB}(A(x,y), Q(x,y))} \biggr] $$
in terms of the two-parameter contraharmonic and arithmetic mean
$$ W_{\lambda , \nu }(x, y)=C^{\nu }\bigl[\lambda x+(1-\lambda )y, \lambda y+(1- \lambda )x\bigr]A^{1-\nu }(x, y), $$
and find new bounds for the functions \(\sinh (u)/u\) and \(\arctan (u)/u\) on the interval \((0, 1)\).

5 Conclusion

In the article, we prove that the double inequalities
$$ W_{\lambda _{1}, \nu }(x, y)< \mathcal{R}_{QA}(x, y)< W_{\mu _{1}, \nu }(x, y),\qquad W_{\lambda _{2}, \nu }(x, y)< \mathcal{R}_{AQ}(x, y)< W_{\mu _{2}, \nu }(x, y) $$
hold for all \(x, y>0\) with \(x\neq y\) if and only if \(\lambda _{1} \leq 1/2+\sqrt{ [ (\sqrt{2}+\log (1+\sqrt{2}) )/2 ] ^{1/\nu }-1}/2\), \(\mu _{1}\geq 1/2+\sqrt{6\nu }/(12\nu )\), \(\lambda _{2}\leq 1/2+\sqrt{ [(\pi +2)/4 ]^{1/\nu }-1}/2\) and \(\mu _{2}\geq 1/2+\sqrt{3\nu }/(6\nu )\) if \(\lambda _{1}, \mu _{1}, \lambda _{2}, \mu _{2}\in [1/2, 1]\) and \(\nu \in [1/2, \infty )\). Our results are a natural generalization of some previously known results, and our approach may lead to many follow-up studies.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Chu, H.-H., Qian, W.-M., Chu, Y.-M., Song, Y.-Q.: Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means. J. Nonlinear Sci. Appl. 9(5), 3424–3432 (2016) MathSciNetMATHCrossRef Chu, H.-H., Qian, W.-M., Chu, Y.-M., Song, Y.-Q.: Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means. J. Nonlinear Sci. Appl. 9(5), 3424–3432 (2016) MathSciNetMATHCrossRef
2.
Zurück zum Zitat Chu, Y.-M., Hou, S.-W.: Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstr. Appl. Anal. 2012, Article ID 425175 (2012) MathSciNetMATH Chu, Y.-M., Hou, S.-W.: Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstr. Appl. Anal. 2012, Article ID 425175 (2012) MathSciNetMATH
3.
Zurück zum Zitat Chu, Y.-M., Wang, M.-K., Ma, X.-Y.: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161–166 (2013) MathSciNetMATHCrossRef Chu, Y.-M., Wang, M.-K., Ma, X.-Y.: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161–166 (2013) MathSciNetMATHCrossRef
4.
Zurück zum Zitat Neuman, E., Sándor, J.: On the Schwab–Borchardt mean. Math. Pannon. 14(2), 253–266 (2003) MathSciNetMATH Neuman, E., Sándor, J.: On the Schwab–Borchardt mean. Math. Pannon. 14(2), 253–266 (2003) MathSciNetMATH
5.
Zurück zum Zitat Chu, Y.-M., Wang, M.-K.: Inequalities between arithmetic–geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, Article ID 830585 (2012) MathSciNetMATH Chu, Y.-M., Wang, M.-K.: Inequalities between arithmetic–geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, Article ID 830585 (2012) MathSciNetMATH
6.
Zurück zum Zitat Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017) MathSciNetMATHCrossRef Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017) MathSciNetMATHCrossRef
7.
Zurück zum Zitat Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic–geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetMATHCrossRef Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic–geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetMATHCrossRef
8.
Zurück zum Zitat Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011) MathSciNetMATH Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011) MathSciNetMATH
9.
Zurück zum Zitat Liu, Z.-Y., Santos, J., Ralha, R.: On computing complex square roots of real matrices. Appl. Math. Lett. 25(10), 1565–1568 (2012) MathSciNetMATHCrossRef Liu, Z.-Y., Santos, J., Ralha, R.: On computing complex square roots of real matrices. Appl. Math. Lett. 25(10), 1565–1568 (2012) MathSciNetMATHCrossRef
10.
Zurück zum Zitat Jiang, Y.-J., Ma, J.-T.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 244, 115–124 (2013) MathSciNetMATHCrossRef Jiang, Y.-J., Ma, J.-T.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 244, 115–124 (2013) MathSciNetMATHCrossRef
11.
Zurück zum Zitat Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike–slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013) MathSciNetMATHCrossRef Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike–slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013) MathSciNetMATHCrossRef
12.
Zurück zum Zitat Qin, G.-X., Huang, C.-X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 2013, Article ID 305 (2013) MathSciNetMATHCrossRef Qin, G.-X., Huang, C.-X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 2013, Article ID 305 (2013) MathSciNetMATHCrossRef
13.
Zurück zum Zitat Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014) MathSciNetMATH Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014) MathSciNetMATH
14.
Zurück zum Zitat Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014) MathSciNetMATHCrossRef Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014) MathSciNetMATHCrossRef
15.
Zurück zum Zitat Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014) MathSciNetMATHCrossRef Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014) MathSciNetMATHCrossRef
16.
Zurück zum Zitat Xie, D.-Q., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015) MathSciNetMATHCrossRef Xie, D.-Q., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015) MathSciNetMATHCrossRef
17.
Zurück zum Zitat Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015) MathSciNetMATH Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015) MathSciNetMATH
18.
Zurück zum Zitat Wang, W.-S.: High order stable Runge–Kutta methods for nonlinear generalized pantograph equations on the geometric mesh. Appl. Math. Model. 39(1), 270–283 (2015) MathSciNetMATHCrossRef Wang, W.-S.: High order stable Runge–Kutta methods for nonlinear generalized pantograph equations on the geometric mesh. Appl. Math. Model. 39(1), 270–283 (2015) MathSciNetMATHCrossRef
19.
Zurück zum Zitat Tang, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016) MathSciNetMATHCrossRef Tang, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016) MathSciNetMATHCrossRef
20.
Zurück zum Zitat Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016) MathSciNetCrossRef Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016) MathSciNetCrossRef
21.
Zurück zum Zitat Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016) MathSciNetMATH Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016) MathSciNetMATH
22.
Zurück zum Zitat Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017) MathSciNetMATHCrossRef Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017) MathSciNetMATHCrossRef
23.
Zurück zum Zitat Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017) MathSciNetMATH Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017) MathSciNetMATH
24.
Zurück zum Zitat Li, J., Liu, F.-W., Feng, L.-B., Turner, I.W.: A novel finite volume method for the Riesz space distributed-order advection–diffusion equation. Appl. Math. Model. 46, 536–553 (2017) MathSciNetCrossRef Li, J., Liu, F.-W., Feng, L.-B., Turner, I.W.: A novel finite volume method for the Riesz space distributed-order advection–diffusion equation. Appl. Math. Model. 46, 536–553 (2017) MathSciNetCrossRef
25.
Zurück zum Zitat Liu, Z.-Y., Qin, X.-R., Wu, N.-C., Zhang, Y.-L.: The shifted classical circulant and skew circulant splitting iterative methods for Toeplitz matrices. Can. Math. Bull. 60(4), 807–815 (2017) MathSciNetMATHCrossRef Liu, Z.-Y., Qin, X.-R., Wu, N.-C., Zhang, Y.-L.: The shifted classical circulant and skew circulant splitting iterative methods for Toeplitz matrices. Can. Math. Bull. 60(4), 807–815 (2017) MathSciNetMATHCrossRef
26.
Zurück zum Zitat Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction–diffusion higher-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017) MathSciNetMATHCrossRef Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction–diffusion higher-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017) MathSciNetMATHCrossRef
27.
Zurück zum Zitat Yang, C., Huang, L.-H.: New criteria on exponential synchronization and existence of periodic solutions of complex BAM networks with delays. J. Nonlinear Sci. Appl. 10(10), 5464–5482 (2017) MathSciNetMATHCrossRef Yang, C., Huang, L.-H.: New criteria on exponential synchronization and existence of periodic solutions of complex BAM networks with delays. J. Nonlinear Sci. Appl. 10(10), 5464–5482 (2017) MathSciNetMATHCrossRef
28.
Zurück zum Zitat Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017) MathSciNetMATHCrossRef Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017) MathSciNetMATHCrossRef
29.
Zurück zum Zitat Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017) MathSciNetCrossRef Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017) MathSciNetCrossRef
30.
Zurück zum Zitat Xi, H.-Y., Huang, L.-H., Qiao, Y.-C., Li, H.-Y., Huang, C.-X.: Permanence and partial extinction in a delayed three-species food chain model with stage structure and time-varying coefficients. J. Nonlinear Sci. Appl. 10(12), 6177–6191 (2017) MathSciNetMATHCrossRef Xi, H.-Y., Huang, L.-H., Qiao, Y.-C., Li, H.-Y., Huang, C.-X.: Permanence and partial extinction in a delayed three-species food chain model with stage structure and time-varying coefficients. J. Nonlinear Sci. Appl. 10(12), 6177–6191 (2017) MathSciNetMATHCrossRef
31.
Zurück zum Zitat Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018) MathSciNetCrossRef Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018) MathSciNetCrossRef
32.
Zurück zum Zitat Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018) MathSciNetMATH Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018) MathSciNetMATH
33.
Zurück zum Zitat Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018) MathSciNetMATH Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018) MathSciNetMATH
34.
Zurück zum Zitat Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, Article ID 251 (2018) MathSciNetCrossRef Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, Article ID 251 (2018) MathSciNetCrossRef
35.
Zurück zum Zitat Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 233, 204–219 (2018) MATH Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 233, 204–219 (2018) MATH
36.
Zurück zum Zitat Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018) MathSciNetMATHCrossRef Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018) MathSciNetMATHCrossRef
37.
Zurück zum Zitat Zhu, K.-X., Xie, Y.-Q., Zhou, F.: Pullback attractors for a damped semilinear wave equation with delays. Acta Math. Sin. 34(7), 1131–1150 (2018) MathSciNetMATHCrossRef Zhu, K.-X., Xie, Y.-Q., Zhou, F.: Pullback attractors for a damped semilinear wave equation with delays. Acta Math. Sin. 34(7), 1131–1150 (2018) MathSciNetMATHCrossRef
39.
Zurück zum Zitat Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018) MathSciNetMATHCrossRef Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018) MathSciNetMATHCrossRef
40.
Zurück zum Zitat Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018) MathSciNetCrossRef Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018) MathSciNetCrossRef
41.
Zurück zum Zitat Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018) MathSciNetMATHCrossRef Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018) MathSciNetMATHCrossRef
42.
Zurück zum Zitat Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018) MathSciNetMATHCrossRef Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018) MathSciNetMATHCrossRef
43.
Zurück zum Zitat Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction–diffusion system with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018) MathSciNetMATHCrossRef Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction–diffusion system with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018) MathSciNetMATHCrossRef
44.
Zurück zum Zitat Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019) MathSciNetMATHCrossRef Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019) MathSciNetMATHCrossRef
45.
Zurück zum Zitat Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019) MathSciNetMATH Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019) MathSciNetMATH
46.
Zurück zum Zitat Li, J., Ying, J.-Y., Xie, D.-X.: On the analysis and applications of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019) MathSciNetMATHCrossRef Li, J., Ying, J.-Y., Xie, D.-X.: On the analysis and applications of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019) MathSciNetMATHCrossRef
47.
Zurück zum Zitat Li, Y., Li, J., Wen, P.H.: Finite and infinite block Petrov–Galerkin method for cracks in functionally graded materials. Appl. Math. Model. 68, 306–326 (2019) MathSciNetCrossRef Li, Y., Li, J., Wen, P.H.: Finite and infinite block Petrov–Galerkin method for cracks in functionally graded materials. Appl. Math. Model. 68, 306–326 (2019) MathSciNetCrossRef
48.
Zurück zum Zitat Jiang, Y.-J., Xu, X.-J.: A monotone finite volume methods for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019) MathSciNetMATHCrossRef Jiang, Y.-J., Xu, X.-J.: A monotone finite volume methods for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019) MathSciNetMATHCrossRef
50.
Zurück zum Zitat Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019) MathSciNetMATHCrossRef Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019) MathSciNetMATHCrossRef
51.
Zurück zum Zitat Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019) MathSciNetCrossRef Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019) MathSciNetCrossRef
52.
Zurück zum Zitat Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019) MathSciNetCrossRef Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019) MathSciNetCrossRef
53.
Zurück zum Zitat Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019) MathSciNetMATH Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019) MathSciNetMATH
54.
Zurück zum Zitat Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019) MATH Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019) MATH
55.
Zurück zum Zitat Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the function in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019) MathSciNetMATH Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the function in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019) MathSciNetMATH
56.
Zurück zum Zitat Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetMATHCrossRef Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetMATHCrossRef
57.
Zurück zum Zitat Chu, Y.-M., Wang, M.-K., Qiu, Y.-F.: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011, Article ID 697547 (2011) MathSciNetMATH Chu, Y.-M., Wang, M.-K., Qiu, Y.-F.: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011, Article ID 697547 (2011) MathSciNetMATH
58.
Zurück zum Zitat Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141–1146 (2012) MathSciNetMATHCrossRef Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141–1146 (2012) MathSciNetMATHCrossRef
59.
Zurück zum Zitat Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521–527 (2012) MathSciNetMATHCrossRef Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521–527 (2012) MathSciNetMATHCrossRef
60.
Zurück zum Zitat Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014) MathSciNetMATHCrossRef Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014) MathSciNetMATHCrossRef
61.
Zurück zum Zitat Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018) MathSciNetMATH Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018) MathSciNetMATH
62.
Zurück zum Zitat Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14(4), 833–837 (2011) MathSciNetMATH Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14(4), 833–837 (2011) MathSciNetMATH
63.
Zurück zum Zitat Qiu, S.-L., Qiu, Y.-F., Wang, M.-K., Chu, Y.-M.: Hölder mean inequalities for the generalized Grötzsch ring and Hersch–Pfluger distortion functions. Math. Inequal. Appl. 15(1), 237–245 (2012) MathSciNetMATH Qiu, S.-L., Qiu, Y.-F., Wang, M.-K., Chu, Y.-M.: Hölder mean inequalities for the generalized Grötzsch ring and Hersch–Pfluger distortion functions. Math. Inequal. Appl. 15(1), 237–245 (2012) MathSciNetMATH
64.
Zurück zum Zitat Wang, M.-K., Qiu, S.-L., Chu, Y.-M., Jiang, Y.-P.: Generalized Hersch–Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 385(1), 221–229 (2012) MathSciNetMATHCrossRef Wang, M.-K., Qiu, S.-L., Chu, Y.-M., Jiang, Y.-P.: Generalized Hersch–Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 385(1), 221–229 (2012) MathSciNetMATHCrossRef
65.
Zurück zum Zitat Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Jiang, Y.-P.: Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 63(7), 1177–1184 (2012) MathSciNetMATHCrossRef Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Jiang, Y.-P.: Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 63(7), 1177–1184 (2012) MathSciNetMATHCrossRef
66.
Zurück zum Zitat Chu, Y.-M., Wang, M.-K., Jiang, Y.-P., Qiu, S.-L.: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637–642 (2012) MathSciNetMATHCrossRef Chu, Y.-M., Wang, M.-K., Jiang, Y.-P., Qiu, S.-L.: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637–642 (2012) MathSciNetMATHCrossRef
67.
Zurück zum Zitat Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119–126 (2013) MathSciNetMATHCrossRef Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119–126 (2013) MathSciNetMATHCrossRef
68.
Zurück zum Zitat Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017) MathSciNetMATHCrossRef Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017) MathSciNetMATHCrossRef
69.
Zurück zum Zitat Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018) MathSciNetCrossRef Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018) MathSciNetCrossRef
70.
Zurück zum Zitat Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019) MathSciNetCrossRef Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019) MathSciNetCrossRef
71.
Zurück zum Zitat Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Qiu, Y.-F.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MathSciNetMATH Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Qiu, Y.-F.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MathSciNetMATH
72.
Zurück zum Zitat Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetMATHCrossRef Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetMATHCrossRef
73.
74.
Zurück zum Zitat Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019) MathSciNetMATH Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019) MathSciNetMATH
76.
Zurück zum Zitat Zhang, Y., Chu, Y.-M., Jiang, Y.-L.: Sharp geometric means bounds for Neuman means. Abstr. Appl. Anal. 2014, Article ID 949815 (2014) MathSciNetMATH Zhang, Y., Chu, Y.-M., Jiang, Y.-L.: Sharp geometric means bounds for Neuman means. Abstr. Appl. Anal. 2014, Article ID 949815 (2014) MathSciNetMATH
77.
Zurück zum Zitat Yang, Y.-Y., Qian, W.-M., Chu, Y.-M.: Refinements of bounds for Neuman means with applications. J. Nonlinear Sci. Appl. 9(4), 1529–1540 (2016) MathSciNetMATHCrossRef Yang, Y.-Y., Qian, W.-M., Chu, Y.-M.: Refinements of bounds for Neuman means with applications. J. Nonlinear Sci. Appl. 9(4), 1529–1540 (2016) MathSciNetMATHCrossRef
78.
Zurück zum Zitat Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATH
Metadaten
Titel
Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
verfasst von
Wei-Mao Qian
Zai-Yin He
Hong-Wei Zhang
Yu-Ming Chu
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2124-5

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe

Premium Partner