Skip to main content
Erschienen in: Pattern Analysis and Applications 4/2023

27.09.2023 | Theoretical Advances

Expanded relative density peak clustering for image segmentation

verfasst von: Miao Li, Yan Ma, Hui Huang, Bin Wang

Erschienen in: Pattern Analysis and Applications | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The density peak clustering (DPC) is one of the most popular algorithms for segmenting images due to its simplicity and efficiency. Since DPC and its variants are not specifically designed for image segmentation, their segmentation results do not necessarily meet both subjective and objective metrics. We propose an expanded relative density-based clustering algorithm as a solution to the above problems, which can automatically determine the cluster number and make the image segmentation results more consistent with subjective criteria. First, the image is pre-segmented into superpixels using the simple linear iterative clustering algorithm, and the superpixels are represented by feature vectors containing color and texture information. Secondly, the expanded relative density of the data point is obtained by comparing the tightness of a mini-cluster with its neighboring mini-clusters. The Sigmoid function is then applied to the data point with small density but large relative distance to further adjust its relative distance so that the distribution of cluster centers matches the characteristics of the image. Next, the optimal cluster number is determined by the rate of change of the sum of squared errors. Finally, the cluster center pairs with smaller distances are merged using the cluster center merging algorithm. The experiments conducted on synthetic and real datasets demonstrate that the performance of the proposed algorithm outperforms the compared algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moon N, Bullitt E, Leemput K, Gerig G (2002) Automatic brain and tumor segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 372–379 Moon N, Bullitt E, Leemput K, Gerig G (2002) Automatic brain and tumor segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 372–379
2.
Zurück zum Zitat Daza L, Pérez JC, Arbeláez P (2021) Towards robust general medical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 3–13 Daza L, Pérez JC, Arbeláez P (2021) Towards robust general medical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 3–13
3.
Zurück zum Zitat Zhou W, Berrio JS, Worrall S, Nebot E (2019) Automated evaluation of semantic segmentation robustness for autonomous driving. IEEE Trans Intell Transp Syst 21(5):1951–1963CrossRef Zhou W, Berrio JS, Worrall S, Nebot E (2019) Automated evaluation of semantic segmentation robustness for autonomous driving. IEEE Trans Intell Transp Syst 21(5):1951–1963CrossRef
4.
Zurück zum Zitat Scharf T, Kirkland CL, Daggitt ML, Barham M, Puzyrev V (2022) AnalyZr: a python application for zircon grain image segmentation and shape analysis. Comput Geosci 162:105057CrossRef Scharf T, Kirkland CL, Daggitt ML, Barham M, Puzyrev V (2022) AnalyZr: a python application for zircon grain image segmentation and shape analysis. Comput Geosci 162:105057CrossRef
5.
Zurück zum Zitat Sun W, Wang R (2018) Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geosci Remote Sens Lett 15(3):474–478CrossRef Sun W, Wang R (2018) Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geosci Remote Sens Lett 15(3):474–478CrossRef
6.
Zurück zum Zitat Long X, Zhang W, Zhao B (2020) PSPNet-SLAM: a semantic SLAM detect dynamic object by pyramid scene parsing network. IEEE Access 8:214685–214695CrossRef Long X, Zhang W, Zhao B (2020) PSPNet-SLAM: a semantic SLAM detect dynamic object by pyramid scene parsing network. IEEE Access 8:214685–214695CrossRef
7.
Zurück zum Zitat Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef
8.
Zurück zum Zitat Gkioxari G, Malik J, Johnson J (2019) Mesh r-cnn. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9785–9795 Gkioxari G, Malik J, Johnson J (2019) Mesh r-cnn. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9785–9795
9.
Zurück zum Zitat Kumar M, Bhandari AK, Singh N, Ghosh A (2021) A new multilevel histogram thresholding approach using variational mode decomposition. Multimedia Tools Appl 80(7):11331–11363CrossRef Kumar M, Bhandari AK, Singh N, Ghosh A (2021) A new multilevel histogram thresholding approach using variational mode decomposition. Multimedia Tools Appl 80(7):11331–11363CrossRef
10.
Zurück zum Zitat Shang R, Lin J, Jiao L, Yang X, Li Y (2020) Superpixel boundary-based edge description algorithm for SAR image segmentation. IEEE J Sel Top Appli Earth Observ Remote Sens 13:1972–1985CrossRef Shang R, Lin J, Jiao L, Yang X, Li Y (2020) Superpixel boundary-based edge description algorithm for SAR image segmentation. IEEE J Sel Top Appli Earth Observ Remote Sens 13:1972–1985CrossRef
11.
Zurück zum Zitat Ma Y, Lin H, Wang Y, Huang H, He X (2021) A multi-stage hierarchical clustering algorithm based on centroid of tree and cut edge constraint. Inf Sci 557:194–219MathSciNetCrossRefMATH Ma Y, Lin H, Wang Y, Huang H, He X (2021) A multi-stage hierarchical clustering algorithm based on centroid of tree and cut edge constraint. Inf Sci 557:194–219MathSciNetCrossRefMATH
12.
Zurück zum Zitat Yang J, Ma Y, Zhang X, Li S, Zhang Y (2017) An initialization method based on hybrid distance for k-means algorithm. Neural Comput 29(11):3094–3117MathSciNetCrossRefMATH Yang J, Ma Y, Zhang X, Li S, Zhang Y (2017) An initialization method based on hybrid distance for k-means algorithm. Neural Comput 29(11):3094–3117MathSciNetCrossRefMATH
13.
Zurück zum Zitat Lei T, Jia X, Zhang Y, Liu S, Meng H, Nandi AK (2018) Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans Fuzzy Syst 27(9):1753–1766CrossRef Lei T, Jia X, Zhang Y, Liu S, Meng H, Nandi AK (2018) Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans Fuzzy Syst 27(9):1753–1766CrossRef
14.
Zurück zum Zitat Chen Y, Zhou L, Pei S, Yu Z, Chen Y, Liu X, Du J, Xiong N (2019) KNN-BLOCK DBSCAN: Fast clustering for large-scale data. IEEE Trans Syst Man Cybern Syst 51(6):3939–3953CrossRef Chen Y, Zhou L, Pei S, Yu Z, Chen Y, Liu X, Du J, Xiong N (2019) KNN-BLOCK DBSCAN: Fast clustering for large-scale data. IEEE Trans Syst Man Cybern Syst 51(6):3939–3953CrossRef
15.
Zurück zum Zitat Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef
16.
Zurück zum Zitat Chen Z, Qi Z, Meng F, Cui L, Shi Y (2015) Image segmentation via improving clustering algorithms with density and distance. Procedia Comput Sci 55:1015–1022CrossRef Chen Z, Qi Z, Meng F, Cui L, Shi Y (2015) Image segmentation via improving clustering algorithms with density and distance. Procedia Comput Sci 55:1015–1022CrossRef
17.
Zurück zum Zitat Shi Y, Chen Z, Qi Z, Meng F, Cui L (2017) A novel clustering-based image segmentation via density peaks algorithm with mid-level feature. Neural Comput Appl 28(1):29–39CrossRef Shi Y, Chen Z, Qi Z, Meng F, Cui L (2017) A novel clustering-based image segmentation via density peaks algorithm with mid-level feature. Neural Comput Appl 28(1):29–39CrossRef
18.
Zurück zum Zitat Guan J, Li S, He X, Chen J (2021) Peak-graph-based fast density peak clustering for image segmentation. IEEE Signal Process Lett 28:897–901CrossRef Guan J, Li S, He X, Chen J (2021) Peak-graph-based fast density peak clustering for image segmentation. IEEE Signal Process Lett 28:897–901CrossRef
19.
Zurück zum Zitat Chen J, Zheng H, Lin X, Wu Y, Su M (2018) A novel image segmentation method based on fast density clustering algorithm. Eng Appl Artif Intell 73:92–110CrossRef Chen J, Zheng H, Lin X, Wu Y, Su M (2018) A novel image segmentation method based on fast density clustering algorithm. Eng Appl Artif Intell 73:92–110CrossRef
20.
Zurück zum Zitat Guo W, Wang W, Zhao S, Niu Y, Zhang Z, Liu X (2022) Density peak clustering with connectivity estimation. Knowl Based Syst 243:108501CrossRef Guo W, Wang W, Zhao S, Niu Y, Zhang Z, Liu X (2022) Density peak clustering with connectivity estimation. Knowl Based Syst 243:108501CrossRef
21.
Zurück zum Zitat Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl Based Syst 99:135–145CrossRef Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl Based Syst 99:135–145CrossRef
22.
Zurück zum Zitat Hou J, Zhang A, Qi N (2020) Density peak clustering based on relative density relationship. Pattern Recogn 108:107554CrossRef Hou J, Zhang A, Qi N (2020) Density peak clustering based on relative density relationship. Pattern Recogn 108:107554CrossRef
23.
Zurück zum Zitat Li Z, Zheng Y, Cao L, Jiao L, Zhong Y, Zhang C (2020) A Student’s t-based density peaks clustering with superpixel segmentation (tDPCSS) method for image color clustering. Color Res Appl 45(4):656–670CrossRef Li Z, Zheng Y, Cao L, Jiao L, Zhong Y, Zhang C (2020) A Student’s t-based density peaks clustering with superpixel segmentation (tDPCSS) method for image color clustering. Color Res Appl 45(4):656–670CrossRef
24.
Zurück zum Zitat Arbelaez P, Maire M, Fowlkes C, Malik J (2010) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916CrossRef Arbelaez P, Maire M, Fowlkes C, Malik J (2010) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916CrossRef
25.
Zurück zum Zitat Wang Y, Ma Y, Huang H (2021) A neighborhood-based three-stage hierarchical clustering algorithm. Multimedia Tools Appl 80(21):32379–32407CrossRef Wang Y, Ma Y, Huang H (2021) A neighborhood-based three-stage hierarchical clustering algorithm. Multimedia Tools Appl 80(21):32379–32407CrossRef
26.
Zurück zum Zitat Kodinariya TM, Makwana PR (2013) Review on determining number of Cluster in K-Means Clustering. Int J 1(6):90–95 Kodinariya TM, Makwana PR (2013) Review on determining number of Cluster in K-Means Clustering. Int J 1(6):90–95
27.
Zurück zum Zitat Shenghui W, Hanbing L (2020) Adaptive K-valued K-means clustering algorithm. In: 2020 5th International conference on mechanical, control and computer engineering (ICMCCE). IEEE, pp 1442–1445 Shenghui W, Hanbing L (2020) Adaptive K-valued K-means clustering algorithm. In: 2020 5th International conference on mechanical, control and computer engineering (ICMCCE). IEEE, pp 1442–1445
28.
Zurück zum Zitat Fu Z, Sun Y, Fan L, Han Y (2018) Multiscale and multifeature segmentation of high-spatial resolution remote sensing images using superpixels with mutual optimal strategy. Remote Sens 10(8):1289CrossRef Fu Z, Sun Y, Fan L, Han Y (2018) Multiscale and multifeature segmentation of high-spatial resolution remote sensing images using superpixels with mutual optimal strategy. Remote Sens 10(8):1289CrossRef
29.
Zurück zum Zitat Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRef Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRef
30.
Zurück zum Zitat Shan Y, Ma Y, Liao Y, Huang H, Wang B (2022) Interactive image segmentation based on multi-layer random forest classifiers. Multimedia Tools Appl 11:1–27 Shan Y, Ma Y, Liao Y, Huang H, Wang B (2022) Interactive image segmentation based on multi-layer random forest classifiers. Multimedia Tools Appl 11:1–27
32.
Zurück zum Zitat Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203CrossRef Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203CrossRef
33.
Zurück zum Zitat Lei T, Liu P, Jia X, Zhang X, Meng H, Nandi AK (2019) Automatic fuzzy clustering framework for image segmentation. IEEE Trans Fuzzy Syst 28(9):2078–2092CrossRef Lei T, Liu P, Jia X, Zhang X, Meng H, Nandi AK (2019) Automatic fuzzy clustering framework for image segmentation. IEEE Trans Fuzzy Syst 28(9):2078–2092CrossRef
34.
Zurück zum Zitat Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199CrossRef Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199CrossRef
35.
Zurück zum Zitat Gong M, Liang Y, Shi J, Ma W, Ma J (2012) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584MathSciNetCrossRefMATH Gong M, Liang Y, Shi J, Ma W, Ma J (2012) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584MathSciNetCrossRefMATH
36.
Zurück zum Zitat Wang X, Tang Y, Masnou S, Chen L (2015) A global/local affinity graph for image segmentation. IEEE Trans Image Process 24(4):1399–1411MathSciNetCrossRefMATH Wang X, Tang Y, Masnou S, Chen L (2015) A global/local affinity graph for image segmentation. IEEE Trans Image Process 24(4):1399–1411MathSciNetCrossRefMATH
Metadaten
Titel
Expanded relative density peak clustering for image segmentation
verfasst von
Miao Li
Yan Ma
Hui Huang
Bin Wang
Publikationsdatum
27.09.2023
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 4/2023
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-023-01195-3

Weitere Artikel der Ausgabe 4/2023

Pattern Analysis and Applications 4/2023 Zur Ausgabe

Premium Partner