Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2018

01.03.2018

(\(\frac{G^{'}}{G^{2}}\))-Expansion method: new traveling wave solutions for some nonlinear fractional partial differential equations

verfasst von: Saima Arshed, Misbah Sadia

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, some new traveling wave solutions for fractional partial differential equations (PDEs) have been developed. The time-fractional Burgers equation, fractional biological population model and space-time fractional Whitham Broer Kaup equations have been considered. These equations have significant importance in different areas such as fluid mechanics, determination of birth and death rates and propagation of shallow water waves. The analytical technique (\(\frac{G^{'}}{G^{2}}\)) has been utilized for finding the new traveling wave solutions of the considered fractional PDEs. (\(\frac{G^{'}}{G^{2}}\))-expansion method is a very useful approach and exceptionally helpful as contrast with other analytical methods. The proposed method provides three unique sort of solutions such as hyperbolic, trigonometric and rational solutions. This approach is likewise applicable to other nonlinear fractional models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdoon, M.A.: First integral method: a general formula for nonlinear fractional Klein–Gordon equation using advanced computing language. Am. J. Comput. Math. 5, 127–134 (2015)CrossRef Abdoon, M.A.: First integral method: a general formula for nonlinear fractional Klein–Gordon equation using advanced computing language. Am. J. Comput. Math. 5, 127–134 (2015)CrossRef
Zurück zum Zitat Aksoy, E., Kaplan, M., Bekir, A.: Exponential rational function method for space-time fractional differential equations. Waves Random Complex Med. 26(2), 142–151 (2016)ADSMathSciNetCrossRefMATH Aksoy, E., Kaplan, M., Bekir, A.: Exponential rational function method for space-time fractional differential equations. Waves Random Complex Med. 26(2), 142–151 (2016)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Alzaidy, J.F.: The fractional sub-equation method and exact analytical solutions for some nonlinear fractional PDEs. Am. J. Math. Anal. 1(1), 14–19 (2013) Alzaidy, J.F.: The fractional sub-equation method and exact analytical solutions for some nonlinear fractional PDEs. Am. J. Math. Anal. 1(1), 14–19 (2013)
Zurück zum Zitat Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by \(\frac{G^{{\prime }}}{G}\)-expansion method. Chin. Phys. B 22(11), 110202 (2013)CrossRef Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by \(\frac{G^{{\prime }}}{G}\)-expansion method. Chin. Phys. B 22(11), 110202 (2013)CrossRef
Zurück zum Zitat Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 426462, 8 (2013)MathSciNetMATH Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 426462, 8 (2013)MathSciNetMATH
Zurück zum Zitat Bekir, A., Güner, Ö., Aksoy, E., Pandir, Y.: Functional variable method for the nonlinear fractional differential equations. AIP Conf. Proc. 1648, 730001 (2015)CrossRef Bekir, A., Güner, Ö., Aksoy, E., Pandir, Y.: Functional variable method for the nonlinear fractional differential equations. AIP Conf. Proc. 1648, 730001 (2015)CrossRef
Zurück zum Zitat Bekir, A., Guner, O., Cevikel, A.: The exp-function method for some time-fractional differential equations. J. Autom. Sinica 4(2), 315–321 (2017)MathSciNetCrossRef Bekir, A., Guner, O., Cevikel, A.: The exp-function method for some time-fractional differential equations. J. Autom. Sinica 4(2), 315–321 (2017)MathSciNetCrossRef
Zurück zum Zitat Bulut, H., Pandir, Y.: Modified trial equation method to the nonlinear fractional Sharma–TassoOlever equation. Int. J. Model. Optim. 3(4), 353–357 (2013)CrossRef Bulut, H., Pandir, Y.: Modified trial equation method to the nonlinear fractional Sharma–TassoOlever equation. Int. J. Model. Optim. 3(4), 353–357 (2013)CrossRef
Zurück zum Zitat Bulut, H., Baskonus, H.M., Pandir, Y.: The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation. Abstr. Appl. Anal. 636802, 8 (2013)MathSciNet Bulut, H., Baskonus, H.M., Pandir, Y.: The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation. Abstr. Appl. Anal. 636802, 8 (2013)MathSciNet
Zurück zum Zitat Chen, J., Chen, H.: The (\(\frac{G^{{\prime }}}{G^{2}}\))- -expansion method and its application to coupled nonlinear Klein–Gordon Equation. J. South China Normal Univ. (Natural Sci. Ed.) 2, 13 (2012) Chen, J., Chen, H.: The (\(\frac{G^{{\prime }}}{G^{2}}\))- -expansion method and its application to coupled nonlinear Klein–Gordon Equation. J. South China Normal Univ. (Natural Sci. Ed.) 2, 13 (2012)
Zurück zum Zitat Çenesiz, Y., Tasbozanand, O., Kurt, A.: Functional variable method for conformable fractional modified KdV–ZK equation and Maccari system. Tbilisi Math. J. 10(1), 117–125 (2017)MathSciNetCrossRefMATH Çenesiz, Y., Tasbozanand, O., Kurt, A.: Functional variable method for conformable fractional modified KdV–ZK equation and Maccari system. Tbilisi Math. J. 10(1), 117–125 (2017)MathSciNetCrossRefMATH
Zurück zum Zitat Ege, S.M., Misirli, E.: The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 135, 1–13 (2014)MathSciNetMATH Ege, S.M., Misirli, E.: The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 135, 1–13 (2014)MathSciNetMATH
Zurück zum Zitat Güner, O., Bekir, A., Cevikel, A.C.: A variety of exact solutions for the time fractional Cahn–Allen equation. Eur. Phys. J. Plus 130(146), 1–13 (2015) Güner, O., Bekir, A., Cevikel, A.C.: A variety of exact solutions for the time fractional Cahn–Allen equation. Eur. Phys. J. Plus 130(146), 1–13 (2015)
Zurück zum Zitat Güner, Ö., Cevikel, A.C.: A procedure to construct exact solutions of nonlinear fractional differential equations. Sci. World J. 2014, 489495 (2014)CrossRef Güner, Ö., Cevikel, A.C.: A procedure to construct exact solutions of nonlinear fractional differential equations. Sci. World J. 2014, 489495 (2014)CrossRef
Zurück zum Zitat Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Med. 2017, 1–9 (2017)MathSciNet Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Med. 2017, 1–9 (2017)MathSciNet
Zurück zum Zitat Hosseinia, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik: Int. J. Light Electron. Opt. 132, 203–209 (2017)CrossRef Hosseinia, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik: Int. J. Light Electron. Opt. 132, 203–209 (2017)CrossRef
Zurück zum Zitat Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)MathSciNetCrossRefMATH Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)MathSciNetCrossRefMATH
Zurück zum Zitat Jafari, H., Tajadodi, H., Kadkhoda, N., Baleanu, D.: Fractional sub-equation method for Cahn–Hilliard and Klein–Gordon equations. Abstr. Appl. Anal. 587179, 5 (2013)MATH Jafari, H., Tajadodi, H., Kadkhoda, N., Baleanu, D.: Fractional sub-equation method for Cahn–Hilliard and Klein–Gordon equations. Abstr. Appl. Anal. 587179, 5 (2013)MATH
Zurück zum Zitat Kaplan, M., Koparan, M., Bekir, A.: Regarding on the exact solutions for the nonlinear fractional differential equations. Open Phys. 14, 478–482 (2016)CrossRef Kaplan, M., Koparan, M., Bekir, A.: Regarding on the exact solutions for the nonlinear fractional differential equations. Open Phys. 14, 478–482 (2016)CrossRef
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
Zurück zum Zitat Liu, W., Chen, K.: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana 81(3), 377–384 (2013)ADSCrossRef Liu, W., Chen, K.: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana 81(3), 377–384 (2013)ADSCrossRef
Zurück zum Zitat Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693 (2012)MathSciNetCrossRefMATH Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693 (2012)MathSciNetCrossRefMATH
Zurück zum Zitat Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear. Sci. Numer. Simul. 16, 1140–1153 (2011)ADSMathSciNetCrossRefMATH Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear. Sci. Numer. Simul. 16, 1140–1153 (2011)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Matinfar, M., Eslami, M., Kordy, M.: The functional variable method for solving the fractional Kortewegde Vries equations and the coupled Kortewegde Vries equations. Indian Acad. Sci. 85(4), 583592 (2015) Matinfar, M., Eslami, M., Kordy, M.: The functional variable method for solving the fractional Kortewegde Vries equations and the coupled Kortewegde Vries equations. Indian Acad. Sci. 85(4), 583592 (2015)
Zurück zum Zitat Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993)MATH Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993)MATH
Zurück zum Zitat Mohyud-Din, S.T., Nawaz, T., Azhar, E., Akbar, M.A.: Fractional sub-equation method to space-time fractional Calogero–Degasperis and potential Kadomtsev–Petviashvili equations. J. Taibah Univ. Sci. 11, 258–263 (2017)CrossRef Mohyud-Din, S.T., Nawaz, T., Azhar, E., Akbar, M.A.: Fractional sub-equation method to space-time fractional Calogero–Degasperis and potential Kadomtsev–Petviashvili equations. J. Taibah Univ. Sci. 11, 258–263 (2017)CrossRef
Zurück zum Zitat Mohyud-Din, S.T., Bibi, S.: Exact solutions for nonlinear fractional differential equations using \(\frac{G^{{\prime }}}{G^{2}}\)-expansion method. Alex. Eng. J. (2017) Mohyud-Din, S.T., Bibi, S.: Exact solutions for nonlinear fractional differential equations using \(\frac{G^{{\prime }}}{G^{2}}\)-expansion method. Alex. Eng. J. (2017)
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, California (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, California (1999)MATH
Zurück zum Zitat Raslan, K.R.: The first integral method for solving some important nonlinear partial differential equations. Nonlinear Dyn. 53(4), 281–286 (2008)MathSciNetCrossRefMATH Raslan, K.R.: The first integral method for solving some important nonlinear partial differential equations. Nonlinear Dyn. 53(4), 281–286 (2008)MathSciNetCrossRefMATH
Zurück zum Zitat Sahoo, S., Ray, S.S.: Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov–Kuznetsov equations. Comput. Math. Appl. 70(2), 158–166 (2015)MathSciNetCrossRef Sahoo, S., Ray, S.S.: Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov–Kuznetsov equations. Comput. Math. Appl. 70(2), 158–166 (2015)MathSciNetCrossRef
Zurück zum Zitat Shang, N., Zheng, B.: Exact solutions for three fractional partial differential equations by the \(\frac{G^{{\prime }}}{G}\) method. IAENG Int. J. Appl. Math. 43(3), 1–6 (2013)MathSciNet Shang, N., Zheng, B.: Exact solutions for three fractional partial differential equations by the \(\frac{G^{{\prime }}}{G}\) method. IAENG Int. J. Appl. Math. 43(3), 1–6 (2013)MathSciNet
Zurück zum Zitat Wang, G., Xu, T.Z.: The modified fractional sub-eqution method and its applications to nonlinear fractional partial differential equations. Roman. J. Phys. 59, 636–645 (2014) Wang, G., Xu, T.Z.: The modified fractional sub-eqution method and its applications to nonlinear fractional partial differential equations. Roman. J. Phys. 59, 636–645 (2014)
Zurück zum Zitat Yan, L.-M., Xu, F.-S.: Generalizied Exp-function method for nonlinear space time fractional differential equations. Therm. Sci. 18(5), 1573–1576 (2014)CrossRef Yan, L.-M., Xu, F.-S.: Generalizied Exp-function method for nonlinear space time fractional differential equations. Therm. Sci. 18(5), 1573–1576 (2014)CrossRef
Zurück zum Zitat Younis, M.: A new approach for the exact solutions of nonlinear equations of fractional order via modified simple equation method. Appl. Math. 5, 1927–1932 (2014)CrossRef Younis, M.: A new approach for the exact solutions of nonlinear equations of fractional order via modified simple equation method. Appl. Math. 5, 1927–1932 (2014)CrossRef
Zurück zum Zitat Younis, M., Zafar, A.: Exact solution to nonlinear differential equations of fractional order via \(\frac{G^{{\prime }}}{G}\)-expansion method. Appl. Math. 5, 1–6 (2014)CrossRef Younis, M., Zafar, A.: Exact solution to nonlinear differential equations of fractional order via \(\frac{G^{{\prime }}}{G}\)-expansion method. Appl. Math. 5, 1–6 (2014)CrossRef
Zurück zum Zitat Ypez-Martnez, H., Sosa, I.O., Reyes, J.M.: Fengs first integral method applied to the ZKBBM and the generalized fisher space-time fractional equations. J Appl Math 191545, 9 (2015)MathSciNet Ypez-Martnez, H., Sosa, I.O., Reyes, J.M.: Fengs first integral method applied to the ZKBBM and the generalized fisher space-time fractional equations. J Appl Math 191545, 9 (2015)MathSciNet
Zurück zum Zitat Zayed, E.M.E., Amer, Y.A., Al-Nowehy, A.-G.: The modified simple equation method and the multiple exp-function method for solving nonlinear fractional Sharma-Tasso-Olver Equation. Acta Mathematicae Applicatae Sinica 32(4), 793–812 (2016)MathSciNetCrossRefMATH Zayed, E.M.E., Amer, Y.A., Al-Nowehy, A.-G.: The modified simple equation method and the multiple exp-function method for solving nonlinear fractional Sharma-Tasso-Olver Equation. Acta Mathematicae Applicatae Sinica 32(4), 793–812 (2016)MathSciNetCrossRefMATH
Zurück zum Zitat Zayed, E.M.E., Hoda Ibrahim, S.A.: Modified simple equation method and its applicationsfor some nonlinear evolution equations in mathematical physics. Int. J. Comput. Appl. 67(6), 39–44 (2013) Zayed, E.M.E., Hoda Ibrahim, S.A.: Modified simple equation method and its applicationsfor some nonlinear evolution equations in mathematical physics. Int. J. Comput. Appl. 67(6), 39–44 (2013)
Zurück zum Zitat Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375(7), 1069–1073 (2011)ADSMathSciNetCrossRefMATH Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375(7), 1069–1073 (2011)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 465723, 8 (2013) Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 465723, 8 (2013)
Metadaten
Titel
()-Expansion method: new traveling wave solutions for some nonlinear fractional partial differential equations
verfasst von
Saima Arshed
Misbah Sadia
Publikationsdatum
01.03.2018
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2018
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-018-1391-6

Weitere Artikel der Ausgabe 3/2018

Optical and Quantum Electronics 3/2018 Zur Ausgabe