Skip to main content

2022 | OriginalPaper | Buchkapitel

4. Experimental and Numerical Analyses of Boundary Shear Stress in Non-prismatic Compound Channel

verfasst von : Laxmikant Das, Kishanjit Kumar Khatua, Bhabani Shankar Das

Erschienen in: River Hydraulics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As boundary shear stress is an important parameter in open channel flow so experiments are carried out in non-prismatic compound channel. These experimental channels comprising of rectangular main channel, two symmetrically disposed diverging flood plains. The boundary shear stress distribution cannot be determined easily as they depend upon the velocity field, the shape of the cross section, and the boundary roughness. Variation of shear on flood plain and main channel with respect to the relative flow depth and divergence angle has been demonstrated. The present experimental non-prismatic compound channel is having diverging flood plain. Here, experimentations were done with two water depth ratio (Dr) such as 0.4 and 0.5 and two diverging angle such as 5.93 and 9.83°. As a complementary study of the experimental research undertaken in this work, one numerical hydrodynamic tools, viz., three-dimensional CFD model (ANSYS—FLUENT) is applied to simulate the flow in non-prismatic compound channel. This study aims to validate ANSYS—FLUENT simulations of open channel flow by comparing the data observed in the hydraulics laboratory of the National Institute of Technology, Rourkela. In this study, I have used four turbulence models to validate the result up to the at most accuracy. The four models are as follows: LES, k-ɛ, k-ω, and SST. The experimental results were taken as the reference, and all the models simulation result of boundary shear stress is compared with it, among the four models LES was given the approximate result and was taken as the best model for the analysis of boundary shear stress for non-prismatic compound channel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bathurst JC, Hey RD, Thorne CR (1979) Secondary flow and shear stress at river bends. J Hydraul Div 105(10):1277–1295CrossRef Bathurst JC, Hey RD, Thorne CR (1979) Secondary flow and shear stress at river bends. J Hydraul Div 105(10):1277–1295CrossRef
Zurück zum Zitat Cater JE, Williams JJR (2008) Large eddy simulation of a long asymmetric compound open channel. J Hydraul Res 46(4):445–453 Cater JE, Williams JJR (2008) Large eddy simulation of a long asymmetric compound open channel. J Hydraul Res 46(4):445–453
Zurück zum Zitat Das BS, Khatua KK (2018) Flow resistance in a compound channel with diverging and converging floodplains. J Hydraul Eng 144(8):04018051CrossRef Das BS, Khatua KK (2018) Flow resistance in a compound channel with diverging and converging floodplains. J Hydraul Eng 144(8):04018051CrossRef
Zurück zum Zitat Das BS, Khatua KK, Devi K (2017) Numerical solution of depth-averaged velocity and boundary shear stress distribution in converging compound channels. Arab J Sci Eng 42(3):1305–1319CrossRef Das BS, Khatua KK, Devi K (2017) Numerical solution of depth-averaged velocity and boundary shear stress distribution in converging compound channels. Arab J Sci Eng 42(3):1305–1319CrossRef
Zurück zum Zitat Ghosh S, Jena SB (1971) Boundary shears distribution in open channel compound. Proc Inst Civ Eng 49(4):417–430 Ghosh S, Jena SB (1971) Boundary shears distribution in open channel compound. Proc Inst Civ Eng 49(4):417–430
Zurück zum Zitat Khatua KK, Patra KC (2010) Evaluation of boundary shears distribution in a meandering channel. In: Proceedings of ninth international conference on hydro-science and engineering. IIT Madras, Chennai, India, p 74 Khatua KK, Patra KC (2010) Evaluation of boundary shears distribution in a meandering channel. In: Proceedings of ninth international conference on hydro-science and engineering. IIT Madras, Chennai, India, p 74
Zurück zum Zitat Knight DW (1981) Boundary shears in smooth and rough channels. J Hydraul Div Am Soc Civil Eng 107(7):839–851 Knight DW (1981) Boundary shears in smooth and rough channels. J Hydraul Div Am Soc Civil Eng 107(7):839–851
Zurück zum Zitat Knight DW, YuanYM, Fares YR (1992) Boundary shears in meandering channels. In: Proceedings of the Institution Symposium on Hydraulic research in nature and laboratory Paper No.11017, vol. 118. Wuhan, China, pp 151–159 Knight DW, YuanYM, Fares YR (1992) Boundary shears in meandering channels. In: Proceedings of the Institution Symposium on Hydraulic research in nature and laboratory Paper No.11017, vol. 118. Wuhan, China, pp 151–159
Zurück zum Zitat Larocque LA, Imran J, Chaudhry MH (2013) 3D numerical simulation of partial breach dam-break flow using the LES and k–ϵ turbulence models. J Hydraul Res 51(2):145–157 Larocque LA, Imran J, Chaudhry MH (2013) 3D numerical simulation of partial breach dam-break flow using the LES and k–ϵ turbulence models. J Hydraul Res 51(2):145–157
Zurück zum Zitat Larocque LA, Imran J, Chaudhry MH (2012) Experimental and numerical investigations of two-dimensional dam-break flows. J Hydraul Eng 139(6):569–579 Larocque LA, Imran J, Chaudhry MH (2012) Experimental and numerical investigations of two-dimensional dam-break flows. J Hydraul Eng 139(6):569–579
Zurück zum Zitat Myers RC, Elsawy EM (1975) Boundary shears in channel with flood plain. J Hydraul Div 101 Myers RC, Elsawy EM (1975) Boundary shears in channel with flood plain. J Hydraul Div 101
Zurück zum Zitat Patel VC (1965) Calibration of the Preston tube and limitations on its use in pressure gradients. J Fluid Mech 23(01):185–208ADSCrossRef Patel VC (1965) Calibration of the Preston tube and limitations on its use in pressure gradients. J Fluid Mech 23(01):185–208ADSCrossRef
Zurück zum Zitat Preston J (1954) The determination of turbulent skin friction by means of Pitot tubes. J R Aeronaut Soc 58(518):109–121CrossRef Preston J (1954) The determination of turbulent skin friction by means of Pitot tubes. J R Aeronaut Soc 58(518):109–121CrossRef
Zurück zum Zitat Salvetti MV, Zang Y, Street RL, Banerjee S (1997) Large-eddy simulation of free-surface decaying turbulence with dynamic subgrid-scale models. Phys Fluids 9(8):2405–2419ADSMathSciNetCrossRef Salvetti MV, Zang Y, Street RL, Banerjee S (1997) Large-eddy simulation of free-surface decaying turbulence with dynamic subgrid-scale models. Phys Fluids 9(8):2405–2419ADSMathSciNetCrossRef
Metadaten
Titel
Experimental and Numerical Analyses of Boundary Shear Stress in Non-prismatic Compound Channel
verfasst von
Laxmikant Das
Kishanjit Kumar Khatua
Bhabani Shankar Das
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-81768-8_4