Skip to main content
Erschienen in: Metals and Materials International 7/2021

30.03.2020

Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel

verfasst von: M. Asadipoor, J. Kadkhodapour, A. Pourkamali Anaraki, S. M. H. Sharifi, A. Ch. Darabi, A. Barnoush

Erschienen in: Metals and Materials International | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging (EEHC), and ex-situ + in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracture surface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The results showed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive to hydrogen, while tensile elongation was profoundly affected. While only ductile dimple features were observed on the fracture surfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogen under the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism, which was manifested by the HE-induced large crack. In the numerical approach, a finite-element analysis was developed to include the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damage mechanism, the GTN damage model was utilized in the 3D finite-element model. After calibration of damage parameters, the predicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Bhattacharya, Developments in advanced high strength steels, in Proceedings of Proceedings of the Joint International Conference of HSLA Steels, Sanya (2005), pp. 70–73 D. Bhattacharya, Developments in advanced high strength steels, in Proceedings of Proceedings of the Joint International Conference of HSLA Steels, Sanya (2005), pp. 70–73
2.
Zurück zum Zitat BC De Cooman, L Chen, HS Kim, Y Estrin, SK Kim, H Voswinckel, State-of-the-science of high manganese TWIP steels for automotive applications, in Microstructure and Texture in Steels (2009), pp. 165–183 BC De Cooman, L Chen, HS Kim, Y Estrin, SK Kim, H Voswinckel, State-of-the-science of high manganese TWIP steels for automotive applications, in Microstructure and Texture in Steels (2009), pp. 165–183
3.
Zurück zum Zitat Q. Liu, J. Venezuela, M. Zhang, Q. Zhou, A. Atrens, Hydrogen trapping in some advanced high strength steels. Corros. Sci. 111, 770–785 (2016) Q. Liu, J. Venezuela, M. Zhang, Q. Zhou, A. Atrens, Hydrogen trapping in some advanced high strength steels. Corros. Sci. 111, 770–785 (2016)
4.
Zurück zum Zitat T. Depover, F. Vercruysse, A. Elmahdy, P. Verleysen, K. Verbeken, Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditions. Int. J. Impact Eng. 123, 118–125 (2019) T. Depover, F. Vercruysse, A. Elmahdy, P. Verleysen, K. Verbeken, Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditions. Int. J. Impact Eng. 123, 118–125 (2019)
5.
Zurück zum Zitat M. Loidl, O. Kolk, Hydrogen Embrittlement in HSSs Limits Use in Lightweight Body in White Design-High strength steels (HSSs) can fail due to hydrogen embrittlement under certain circumstances, which hinders their use in the body in white design. Adv. Mater. Process. 169(3), 22 (2011) M. Loidl, O. Kolk, Hydrogen Embrittlement in HSSs Limits Use in Lightweight Body in White Design-High strength steels (HSSs) can fail due to hydrogen embrittlement under certain circumstances, which hinders their use in the body in white design. Adv. Mater. Process. 169(3), 22 (2011)
6.
Zurück zum Zitat J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel. Acta Mater. 60(10), 4085–4092 (2012) J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel. Acta Mater. 60(10), 4085–4092 (2012)
7.
Zurück zum Zitat J. Sun, T. Jiang, Y. Sun, Y. Wang, Y. Liu, A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement. J. Alloys Compd. 698, 390–399 (2017) J. Sun, T. Jiang, Y. Sun, Y. Wang, Y. Liu, A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement. J. Alloys Compd. 698, 390–399 (2017)
8.
Zurück zum Zitat A. Laureys, T. Depover, R. Petrov, K. Verbeken, Characterization of hydrogen-induced cracking in TRIP-assisted steels. Int. J. Hydrogen Energy 40(47), 16901–16912 (2015) A. Laureys, T. Depover, R. Petrov, K. Verbeken, Characterization of hydrogen-induced cracking in TRIP-assisted steels. Int. J. Hydrogen Energy 40(47), 16901–16912 (2015)
9.
Zurück zum Zitat A. Laureys, T. Depover, R. Petrov, K. Verbeken, Microstructural characterization of hydrogen-induced cracking in TRIP-assisted steel by EBSD. Mater. Charact. 112, 169–179 (2016) A. Laureys, T. Depover, R. Petrov, K. Verbeken, Microstructural characterization of hydrogen-induced cracking in TRIP-assisted steel by EBSD. Mater. Charact. 112, 169–179 (2016)
10.
Zurück zum Zitat J.A. Ronevich, J.G. Speer, D.K. Matlock, Hydrogen embrittlement of commercially produced advanced high strength sheet steels. SAE Int. J. Mater. Manuf. 3(1), 255–267 (2010) J.A. Ronevich, J.G. Speer, D.K. Matlock, Hydrogen embrittlement of commercially produced advanced high strength sheet steels. SAE Int. J. Mater. Manuf. 3(1), 255–267 (2010)
11.
Zurück zum Zitat T. Depover, D.P. Escobar, E. Wallaert, Z. Zermout, K. Verbeken, Effect of hydrogen charging on the mechanical properties of advanced high strength steels. Int. J. Hydrogen Energy 39(9), 4647–4656 (2014) T. Depover, D.P. Escobar, E. Wallaert, Z. Zermout, K. Verbeken, Effect of hydrogen charging on the mechanical properties of advanced high strength steels. Int. J. Hydrogen Energy 39(9), 4647–4656 (2014)
12.
Zurück zum Zitat L. Duprez, K. Verbeken, M. Verhaege, Effect of hydrogen on the mechanical properties of multiphase high strength steels, in Effect of Hydrogen on Materials (2009), pp. 62–69 L. Duprez, K. Verbeken, M. Verhaege, Effect of hydrogen on the mechanical properties of multiphase high strength steels, in Effect of Hydrogen on Materials (2009), pp. 62–69
13.
Zurück zum Zitat D.P. Escobar, K. Verbeken, L. Duprez, M. Verhaege, Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy. Mater. Sci. Eng. A 551, 50–58 (2012) D.P. Escobar, K. Verbeken, L. Duprez, M. Verhaege, Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy. Mater. Sci. Eng. A 551, 50–58 (2012)
14.
Zurück zum Zitat D.P. Escobar, T. Depover, L. Duprez, K. Verbeken, M. Verhaege, Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel. Acta Mater. 60(6–7), 2593–2605 (2012) D.P. Escobar, T. Depover, L. Duprez, K. Verbeken, M. Verhaege, Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel. Acta Mater. 60(6–7), 2593–2605 (2012)
15.
Zurück zum Zitat R.G. Davies, Hydrogen embrittlement of dual-phase steels. Metall. Trans. A 12(9), 1667–1672 (1981) R.G. Davies, Hydrogen embrittlement of dual-phase steels. Metall. Trans. A 12(9), 1667–1672 (1981)
16.
Zurück zum Zitat S. Sun, J. Gu, N. Chen, The influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steel. Scr. Metall. 23(10), 1735–1737 (1989) S. Sun, J. Gu, N. Chen, The influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steel. Scr. Metall. 23(10), 1735–1737 (1989)
17.
Zurück zum Zitat M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Hydrogen embrittlement of industrial components: prediction, prevention, and models. Corrosion 72(7), 943–961 (2016) M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Hydrogen embrittlement of industrial components: prediction, prevention, and models. Corrosion 72(7), 943–961 (2016)
18.
Zurück zum Zitat M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion. Eng. Fract. Mech. 216, 106528 (2019) M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion. Eng. Fract. Mech. 216, 106528 (2019)
19.
Zurück zum Zitat R.P. Gangloff, B.P. Somerday (eds.), Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterization and effects on particular alloy classes (Elsevier, Amsterdam, 2012) R.P. Gangloff, B.P. Somerday (eds.), Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterization and effects on particular alloy classes (Elsevier, Amsterdam, 2012)
20.
Zurück zum Zitat M. Nagumo, Fundamentals of hydrogen embrittlement (Springer, Singapore, 2016), p. 239 M. Nagumo, Fundamentals of hydrogen embrittlement (Springer, Singapore, 2016), p. 239
21.
Zurück zum Zitat M. Nagumo, Hydrogen related failure of steels–a new aspect. Mater. Sci. Technol. 20(8), 940–950 (2004) M. Nagumo, Hydrogen related failure of steels–a new aspect. Mater. Sci. Technol. 20(8), 940–950 (2004)
22.
Zurück zum Zitat S.P. Lynch, Hydrogen embrittlement (HE) phenomena and mechanisms, Stress corrosion cracking (Woodhead Publishing, Sawston, 2011), pp. 90–130 S.P. Lynch, Hydrogen embrittlement (HE) phenomena and mechanisms, Stress corrosion cracking (Woodhead Publishing, Sawston, 2011), pp. 90–130
23.
Zurück zum Zitat A. Barnoush, H. Vehoff, Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation. Acta Mater. 58(16), 5274–5285 (2010) A. Barnoush, H. Vehoff, Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation. Acta Mater. 58(16), 5274–5285 (2010)
24.
Zurück zum Zitat A. Barnoush, H. Vehoff, In situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlement. Corros. Sci. 50(1), 259–267 (2008) A. Barnoush, H. Vehoff, In situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlement. Corros. Sci. 50(1), 259–267 (2008)
25.
Zurück zum Zitat R. Kirchheim, Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations. Scr. Mater. 62(2), 67–70 (2010) R. Kirchheim, Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations. Scr. Mater. 62(2), 67–70 (2010)
26.
Zurück zum Zitat M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater. 165, 734–750 (2019) M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater. 165, 734–750 (2019)
27.
Zurück zum Zitat BN Popov, JW Lee, MB Djukic, Hydrogen permeation and hydrogen-induced cracking, in Handbook of Environmental Degradation of Materials (William Andrew Publishing, 2018), pp. 133–162. BN Popov, JW Lee, MB Djukic, Hydrogen permeation and hydrogen-induced cracking, in Handbook of Environmental Degradation of Materials (William Andrew Publishing, 2018), pp. 133–162.
28.
Zurück zum Zitat M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Hydrogen damage of steels: a case study and hydrogen embrittlement model. Eng. Fail. Anal. 58, 485–498 (2015) M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Hydrogen damage of steels: a case study and hydrogen embrittlement model. Eng. Fail. Anal. 58, 485–498 (2015)
29.
Zurück zum Zitat M.L. Martin, I.M. Robertson, P. Sofronis, Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approach. Acta Mater. 59(9), 3680–3687 (2011) M.L. Martin, I.M. Robertson, P. Sofronis, Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approach. Acta Mater. 59(9), 3680–3687 (2011)
30.
Zurück zum Zitat A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels. J. Mech. Phys. Solids 112, 403–430 (2018) A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels. J. Mech. Phys. Solids 112, 403–430 (2018)
31.
Zurück zum Zitat I.M. Dmytrakh, A.M. Syrotyuk, R.L. Leshchak, Specific features of the deformation and fracture of low-alloy steels in hydrogen-containing media: influence of hydrogen concentration in the metal. Mater. Sci. 54(3), 295–308 (2018) I.M. Dmytrakh, A.M. Syrotyuk, R.L. Leshchak, Specific features of the deformation and fracture of low-alloy steels in hydrogen-containing media: influence of hydrogen concentration in the metal. Mater. Sci. 54(3), 295–308 (2018)
32.
Zurück zum Zitat M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater. 70, 174–187 (2014) M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater. 70, 174–187 (2014)
33.
Zurück zum Zitat B.S. Kumar, V. Kain, M. Singh, B. Vishwanadh, Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel. Mater. Sci. Eng. A 700, 140–151 (2017) B.S. Kumar, V. Kain, M. Singh, B. Vishwanadh, Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel. Mater. Sci. Eng. A 700, 140–151 (2017)
34.
Zurück zum Zitat Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.-H. Han, W. Ke, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel. Acta Mater. 139, 188–195 (2017) Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.-H. Han, W. Ke, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel. Acta Mater. 139, 188–195 (2017)
35.
Zurück zum Zitat M.O.H.S.E.N Dadfarnia, A.K.I.H.I.D.E. Nagao, B.P. Somerday, P.E. Schembri, J.W. Foulk III, K.A. Nibur, D.K. Balch, R.O. Ritchie, P. Sofronis, Modeling hydrogen-induced fracture and crack propagation in high strength steels, in Materials Performance in Hydrogen Environments, Proceedings of the 2016 International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (ASM International, Warrendale, PA 2017), pp. 572–80 M.O.H.S.E.N Dadfarnia, A.K.I.H.I.D.E. Nagao, B.P. Somerday, P.E. Schembri, J.W. Foulk III, K.A. Nibur, D.K. Balch, R.O. Ritchie, P. Sofronis, Modeling hydrogen-induced fracture and crack propagation in high strength steels, in Materials Performance in Hydrogen Environments, Proceedings of the 2016 International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (ASM International, Warrendale, PA 2017), pp. 572–80
36.
Zurück zum Zitat J. Rehrl, K. Mraczek, A. Pichler, E. Werner, Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high-and low strain rate tests. Mater. Sci. Eng. A 590, 360–367 (2014) J. Rehrl, K. Mraczek, A. Pichler, E. Werner, Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high-and low strain rate tests. Mater. Sci. Eng. A 590, 360–367 (2014)
37.
Zurück zum Zitat D. Sasaki, M. Koyama, H. Noguchi, Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks. Mater. Sci. Eng. A 640, 72–81 (2015) D. Sasaki, M. Koyama, H. Noguchi, Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks. Mater. Sci. Eng. A 640, 72–81 (2015)
38.
Zurück zum Zitat X. Li, J. Zhang, E. Akiyama, Y. Wang, Q. Li, Microstructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steel. Int. J. Hydrogen Energy 43(37), 17898–17911 (2018) X. Li, J. Zhang, E. Akiyama, Y. Wang, Q. Li, Microstructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steel. Int. J. Hydrogen Energy 43(37), 17898–17911 (2018)
39.
Zurück zum Zitat L.B. Peral, A. Zafra, J. Belzunce, C. Rodríguez, Effects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperatures. Int. J. Hydrogen Energy 44(7), 3953–3965 (2019) L.B. Peral, A. Zafra, J. Belzunce, C. Rodríguez, Effects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperatures. Int. J. Hydrogen Energy 44(7), 3953–3965 (2019)
40.
Zurück zum Zitat J. Song, W.A. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12(2), 145–151 (2013) J. Song, W.A. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12(2), 145–151 (2013)
41.
Zurück zum Zitat R. Falkenberg, W. Brocks, W. Dietzel, I. Scheider, Modelling the effect of hydrogen on ductile tearing resistance of steels: dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthday. Int. J. Mater. Res. 101(8), 989–996 (2010) R. Falkenberg, W. Brocks, W. Dietzel, I. Scheider, Modelling the effect of hydrogen on ductile tearing resistance of steels: dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthday. Int. J. Mater. Res. 101(8), 989–996 (2010)
42.
Zurück zum Zitat L. Jemblie, V. Olden, O.M. Akselsen, A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375(2098), 20160411 (2017) L. Jemblie, V. Olden, O.M. Akselsen, A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375(2098), 20160411 (2017)
43.
Zurück zum Zitat Y. Hu, C. Dong, H. Luo, K. Xiao, P. Zhong, X. Li, Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques. Metall. Mater. Trans. A 48(9), 4046–4057 (2017) Y. Hu, C. Dong, H. Luo, K. Xiao, P. Zhong, X. Li, Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques. Metall. Mater. Trans. A 48(9), 4046–4057 (2017)
44.
Zurück zum Zitat P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J. Mech. Phys. Solids 58(2), 206–226 (2010) P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J. Mech. Phys. Solids 58(2), 206–226 (2010)
45.
Zurück zum Zitat H. Yu, J.S. Olsen, A. Alvaro, L. Qiao, J. He, Z. Zhang, Hydrogen informed Gurson model for hydrogen embrittlement simulation. Eng. Fract. Mech. 217, 106542 (2019) H. Yu, J.S. Olsen, A. Alvaro, L. Qiao, J. He, Z. Zhang, Hydrogen informed Gurson model for hydrogen embrittlement simulation. Eng. Fract. Mech. 217, 106542 (2019)
46.
Zurück zum Zitat H. Khoramishad, J. Akbardoost, M.R. Ayatollahi, Size effects on parameters of cohesive zone model in mode I fracture of limestone. Int. J. Damage Mech 23(4), 588–605 (2014) H. Khoramishad, J. Akbardoost, M.R. Ayatollahi, Size effects on parameters of cohesive zone model in mode I fracture of limestone. Int. J. Damage Mech 23(4), 588–605 (2014)
47.
Zurück zum Zitat H.K. Birnbaum, P. Sofronis, Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 176(1–2), 191–202 (1994) H.K. Birnbaum, P. Sofronis, Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 176(1–2), 191–202 (1994)
48.
Zurück zum Zitat H. Yu, J.S. Olsen, J. He, Z. Zhang, Hydrogen-microvoid interactions at continuum scale. Int. J. Hydrogen Energy 43(21), 10104–10128 (2018) H. Yu, J.S. Olsen, J. He, Z. Zhang, Hydrogen-microvoid interactions at continuum scale. Int. J. Hydrogen Energy 43(21), 10104–10128 (2018)
49.
Zurück zum Zitat A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99(1), 2–15 (1977) A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99(1), 2–15 (1977)
50.
Zurück zum Zitat V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157–169 (1984) V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157–169 (1984)
51.
Zurück zum Zitat J. Venezuela, C. Tapia-Bastidas, Q. Zhou, T. Depover, K. Verbeken, E. Gray, A. Atrens, Determination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steel. Corros. Sci. 132, 90–106 (2018) J. Venezuela, C. Tapia-Bastidas, Q. Zhou, T. Depover, K. Verbeken, E. Gray, A. Atrens, Determination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steel. Corros. Sci. 132, 90–106 (2018)
52.
Zurück zum Zitat A. Atrens, Q. Liu, C. Tapia-Bastidas, E. Gray, B. Irwanto, J. Venezuela, Q. Liu, Influence of hydrogen on steel components for clean energy. Corros. Mater. Degrad. 1(1), 3–26 (2018) A. Atrens, Q. Liu, C. Tapia-Bastidas, E. Gray, B. Irwanto, J. Venezuela, Q. Liu, Influence of hydrogen on steel components for clean energy. Corros. Mater. Degrad. 1(1), 3–26 (2018)
53.
Zurück zum Zitat G. Hachet, A. Metsue, A. Oudriss, X. Feaugas, Influence of hydrogen on the elastic properties of nickel single crystal: A numerical and experimental investigation. Acta Mater. 148, 280–288 (2018) G. Hachet, A. Metsue, A. Oudriss, X. Feaugas, Influence of hydrogen on the elastic properties of nickel single crystal: A numerical and experimental investigation. Acta Mater. 148, 280–288 (2018)
54.
Zurück zum Zitat T. Depover, K. Verbeken, Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe–C–Cr alloys. Mater. Sci. Eng. A 669, 134–149 (2016) T. Depover, K. Verbeken, Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe–C–Cr alloys. Mater. Sci. Eng. A 669, 134–149 (2016)
55.
Zurück zum Zitat T. Depover, E. Wallaert, K. Verbeken, Fractographic analysis of the role of hydrogen diffusion on the hydrogen embrittlement susceptibility of DP steel. Mater. Sci. Eng. A 649, 201–208 (2016) T. Depover, E. Wallaert, K. Verbeken, Fractographic analysis of the role of hydrogen diffusion on the hydrogen embrittlement susceptibility of DP steel. Mater. Sci. Eng. A 649, 201–208 (2016)
56.
Zurück zum Zitat K. Ichii, M. Koyama, C.C. Tasan, K. Tsuzaki, Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys. Scr. Mater. 150, 74–77 (2018) K. Ichii, M. Koyama, C.C. Tasan, K. Tsuzaki, Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys. Scr. Mater. 150, 74–77 (2018)
57.
Zurück zum Zitat J. Yamabe, M. Yoshikawa, H. Matsunaga, S. Matsuoka, Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment. Int. J. Fatigue 102, 202–213 (2017) J. Yamabe, M. Yoshikawa, H. Matsunaga, S. Matsuoka, Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment. Int. J. Fatigue 102, 202–213 (2017)
58.
Zurück zum Zitat M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydrogen Energy 42(17), 12706–12723 (2017) M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydrogen Energy 42(17), 12706–12723 (2017)
59.
Zurück zum Zitat M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, P. Sofronis, Recent advances on hydrogen embrittlement of structural materials. Int. J. Fract. 196(1–2), 223–243 (2015) M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, P. Sofronis, Recent advances on hydrogen embrittlement of structural materials. Int. J. Fract. 196(1–2), 223–243 (2015)
60.
Zurück zum Zitat G. Bilotta, G. Henaff, D. Halm, M. Arzaghi, Experimental measurement of out-of-plane displacement in crack propagation under gaseous hydrogen. Int. J. Hydrogen Energy 42(15), 10568–10578 (2017) G. Bilotta, G. Henaff, D. Halm, M. Arzaghi, Experimental measurement of out-of-plane displacement in crack propagation under gaseous hydrogen. Int. J. Hydrogen Energy 42(15), 10568–10578 (2017)
61.
Zurück zum Zitat J.A. Ronevich, B.P. Somerday, C.W. San Marchi, Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels. Int. J. Fatigue 82, 497–504 (2016) J.A. Ronevich, B.P. Somerday, C.W. San Marchi, Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels. Int. J. Fatigue 82, 497–504 (2016)
62.
Zurück zum Zitat B.P. Somerday, P. Sofronis, K.A. Nibur, C. San Marchi, R. Kirchheim, Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater. 61(16), 6153–6170 (2013) B.P. Somerday, P. Sofronis, K.A. Nibur, C. San Marchi, R. Kirchheim, Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater. 61(16), 6153–6170 (2013)
63.
Zurück zum Zitat Y. Ogawa, D. Birenis, H. Matsunaga, A. Thøgersen, Ø. Prytz, O. Takakuwa, J. Yamabe, Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron. Scr. Mater. 140, 13–17 (2017) Y. Ogawa, D. Birenis, H. Matsunaga, A. Thøgersen, Ø. Prytz, O. Takakuwa, J. Yamabe, Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron. Scr. Mater. 140, 13–17 (2017)
64.
Zurück zum Zitat D. Wan, Y. Deng, A. Barnoush, Hydrogen embrittlement effect observed by IHPCon a ferritic alloy. Scr. Mater. 151, 24–27 (2018) D. Wan, Y. Deng, A. Barnoush, Hydrogen embrittlement effect observed by IHPCon a ferritic alloy. Scr. Mater. 151, 24–27 (2018)
65.
Zurück zum Zitat T. Depover, D. Hajilou, D. Wan, A. Wang, K.V. Barnoush, Assessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steel. Mater. Sci. Eng. A 754, 613–621 (2019) T. Depover, D. Hajilou, D. Wan, A. Wang, K.V. Barnoush, Assessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steel. Mater. Sci. Eng. A 754, 613–621 (2019)
66.
Zurück zum Zitat M. Asadipoor, A.P. Anaraki, J. Kadkhodapour, S.M.H. Sharifi, A. Barnoush, Macro-and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test. Mater. Sci. Eng. A 772, 138762 (2020) M. Asadipoor, A.P. Anaraki, J. Kadkhodapour, S.M.H. Sharifi, A. Barnoush, Macro-and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test. Mater. Sci. Eng. A 772, 138762 (2020)
67.
Zurück zum Zitat R. Silverstein, D. Eliezer, E. Tal-Gutelmacher, Hydrogen trapping in alloys studied by thermal desorption spectrometry. J. Alloys Compd. 747, 511–522 (2018) R. Silverstein, D. Eliezer, E. Tal-Gutelmacher, Hydrogen trapping in alloys studied by thermal desorption spectrometry. J. Alloys Compd. 747, 511–522 (2018)
68.
Zurück zum Zitat A. Laureys, E. Van den Eeckhout, R. Petrov, K. Verbeken, Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging. Acta Mater. 127, 192–202 (2017) A. Laureys, E. Van den Eeckhout, R. Petrov, K. Verbeken, Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging. Acta Mater. 127, 192–202 (2017)
69.
Zurück zum Zitat T. Depover, K. Verbeken, The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-CX alloys: An experimental proof of the HELP mechanism. Int. J. Hydrogen Energy 43(5), 3050–3061 (2018) T. Depover, K. Verbeken, The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-CX alloys: An experimental proof of the HELP mechanism. Int. J. Hydrogen Energy 43(5), 3050–3061 (2018)
70.
Zurück zum Zitat A. Needleman, V. Tvergaard, An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 35(2), 151–183 (1987) A. Needleman, V. Tvergaard, An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 35(2), 151–183 (1987)
71.
Zurück zum Zitat V. Tvergaard, On localization in ductile materials containing spherical voids. Int. J. Fract. 18(4), 237–252 (1982) V. Tvergaard, On localization in ductile materials containing spherical voids. Int. J. Fract. 18(4), 237–252 (1982)
72.
Zurück zum Zitat J. Faleskog, X. Gao, C.F. Shih, Cell model for nonlinear fracture analysis—I. Micromechanics calibration. Int. J. Fract. 89(4), 355–373 (1998) J. Faleskog, X. Gao, C.F. Shih, Cell model for nonlinear fracture analysis—I. Micromechanics calibration. Int. J. Fract. 89(4), 355–373 (1998)
73.
Zurück zum Zitat M.R. Ayatollahi, A.C. Darabi, H.R. Chamani, J. Kadkhodapour, 3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructure. Acta Mech. Solida Sin. 29(1), 95–110 (2016) M.R. Ayatollahi, A.C. Darabi, H.R. Chamani, J. Kadkhodapour, 3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructure. Acta Mech. Solida Sin. 29(1), 95–110 (2016)
74.
Zurück zum Zitat N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, W. Bleck, A micromechanical damage simulation of dual phase steels using XFEM. Comput. Mater. Sci. 54, 271–279 (2012) N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, W. Bleck, A micromechanical damage simulation of dual phase steels using XFEM. Comput. Mater. Sci. 54, 271–279 (2012)
75.
Zurück zum Zitat V. Uthaisangsuk, U. Prahl, W. Bleck, Micromechanical modelling of damage behaviour of multiphase steels. Comput. Mater. Sci. 43(1), 27–35 (2008) V. Uthaisangsuk, U. Prahl, W. Bleck, Micromechanical modelling of damage behaviour of multiphase steels. Comput. Mater. Sci. 43(1), 27–35 (2008)
76.
Zurück zum Zitat C. Soyarslan, M.M. Gharbi, A.E. Tekkaya, A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steel. Int. J. Solids Struct. 49(13), 1608–1626 (2012) C. Soyarslan, M.M. Gharbi, A.E. Tekkaya, A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steel. Int. J. Solids Struct. 49(13), 1608–1626 (2012)
77.
Zurück zum Zitat I. Tsoupis, M. Merklein, A new way for the adaption of inverse identified GTN-parameters to bending processes, in 13th International LS-DYNA Users Conference (2014), (pp. 1–14) I. Tsoupis, M. Merklein, A new way for the adaption of inverse identified GTN-parameters to bending processes, in 13th International LS-DYNA Users Conference (2014), (pp. 1–14)
78.
Zurück zum Zitat S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, S. Schmauder, Microstructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal models. Metallogr. Microstruct. Anal. 2(3), 156–169 (2013) S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, S. Schmauder, Microstructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal models. Metallogr. Microstruct. Anal. 2(3), 156–169 (2013)
79.
Zurück zum Zitat G. Avramovic-Cingara, C.A. Saleh, M.K. Jain, D.S. Wilkinson, Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall. Mater. Trans. A 40(13), 3117 (2009) G. Avramovic-Cingara, C.A. Saleh, M.K. Jain, D.S. Wilkinson, Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall. Mater. Trans. A 40(13), 3117 (2009)
80.
Zurück zum Zitat L.S. Morrissey, S.M. Handrigan, S. Nakhla, Quantifying void formation and changes to microstructure during hydrogen charging: a precursor to embrittlement and blistering. Metall. Mater. Trans. A 50(3), 1460–1467 (2019) L.S. Morrissey, S.M. Handrigan, S. Nakhla, Quantifying void formation and changes to microstructure during hydrogen charging: a precursor to embrittlement and blistering. Metall. Mater. Trans. A 50(3), 1460–1467 (2019)
81.
Zurück zum Zitat E. Maire, S. Grabon, J. Adrien, P. Lorenzino, Y. Asanuma, O. Takakuwa, H. Matsunaga, Role of hydrogen-charging on nucleation and growth of ductile damage in austenitic stainless steels. Materials 12(9), 1426 (2019) E. Maire, S. Grabon, J. Adrien, P. Lorenzino, Y. Asanuma, O. Takakuwa, H. Matsunaga, Role of hydrogen-charging on nucleation and growth of ductile damage in austenitic stainless steels. Materials 12(9), 1426 (2019)
82.
Zurück zum Zitat T. Kumamoto, M. Koyama, K. Tsuzaki, Strain rate sensitivity of microstructural damage evolution in a dual-phase steel pre-charged with hydrogen. Procedia Struct. Integr. 13, 710–715 (2018) T. Kumamoto, M. Koyama, K. Tsuzaki, Strain rate sensitivity of microstructural damage evolution in a dual-phase steel pre-charged with hydrogen. Procedia Struct. Integr. 13, 710–715 (2018)
83.
Zurück zum Zitat F. Rahimidehgolan, G. Majzoobi, F. Alinejad, J. Fathi Sola, Determination of the constants of GTN damage model using experiment, polynomial regression and kriging methods. Appl. Sci. 7(11), 1179 (2017) F. Rahimidehgolan, G. Majzoobi, F. Alinejad, J. Fathi Sola, Determination of the constants of GTN damage model using experiment, polynomial regression and kriging methods. Appl. Sci. 7(11), 1179 (2017)
84.
Zurück zum Zitat M. Abbasi, M. Ketabchi, H. Izadkhah, D.H. Fatmehsaria, A.N. Aghbash, Identification of GTN model parameters by application of response surface methodology. Procedia Eng. 10, 415–420 (2011) M. Abbasi, M. Ketabchi, H. Izadkhah, D.H. Fatmehsaria, A.N. Aghbash, Identification of GTN model parameters by application of response surface methodology. Procedia Eng. 10, 415–420 (2011)
86.
Zurück zum Zitat C.J. McMahon Jr., Hydrogen-induced intergranular fracture of steels. Eng. Fract. Mech. 68(6), 773–788 (2001) C.J. McMahon Jr., Hydrogen-induced intergranular fracture of steels. Eng. Fract. Mech. 68(6), 773–788 (2001)
87.
Zurück zum Zitat D.E. Jiang, E.A. Carter, First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals. Acta Mater. 52(16), 4801–4807 (2004) D.E. Jiang, E.A. Carter, First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals. Acta Mater. 52(16), 4801–4807 (2004)
88.
Zurück zum Zitat O. Takakuwa, J. Yamabe, H. Matsunaga, Y. Furuya, S. Matsuoka, Comprehensive understanding of ductility loss mechanisms in various steels with external and internal hydrogen. Metall. Mater. Trans. A 48(11), 5717–5732 (2017) O. Takakuwa, J. Yamabe, H. Matsunaga, Y. Furuya, S. Matsuoka, Comprehensive understanding of ductility loss mechanisms in various steels with external and internal hydrogen. Metall. Mater. Trans. A 48(11), 5717–5732 (2017)
Metadaten
Titel
Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel
verfasst von
M. Asadipoor
J. Kadkhodapour
A. Pourkamali Anaraki
S. M. H. Sharifi
A. Ch. Darabi
A. Barnoush
Publikationsdatum
30.03.2020
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 7/2021
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-020-00681-1

Weitere Artikel der Ausgabe 7/2021

Metals and Materials International 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.