Skip to main content

2018 | OriginalPaper | Buchkapitel

Experimental Studies of Sea and Model Ice Fracture Mechanics

verfasst von : Marina Karulina, Alexey Marchenko, Alexandr Sakharov, Evgeny Karulin, Peter Chistyakov

Erschienen in: The Ocean in Motion

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study ice fracture mechanics based on loading experiments with the floating ice beams with fixed ends. Both natural and model ice properties were investigated. Full-scale field works were performed on sea ice of the Svalbard Archipelago. We also performed model ice studies of two ice types in the Ice Basin of the Krylov State Research Centre (KSRC) in St. Petersburg: fine granule and columnar. In the experiments, an ice beam was cut in the ice cover, both ends of which were kept attached to the surrounding ice sheet. Then a horizontal force perpendicular to the side surface of the beam was applied to the middle section of the beam. For these purposes, the vertical cylindrical indenters with a diameter of 0.15 and 0.02 m were used both in field and model conditions. The indenters provided the force application through the whole ice thickness. The natural ice thickness range from 0.4 to 0.6 m; the model ice was 0.05 m thick. The beam width was almost equal to the ice thickness while the beam length varied from 2 to 8 ice thicknesses. The visual observations and the force-time records allowed tracing qualitative patterns of the beam failure process. We measured the breaking force dependence on the ice type and ice beam geometry. The beam tests described here allowed us to find the relationships of various strength parameters of ice crushing, compressive and tensile strength, as well as to compare the behavior of natural and model ice under identical loading conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The basin has been demounted in 2014.
 
Literatur
1.
Zurück zum Zitat Vershinin, S. A. (1988). Ice action on offshore structures. In Results of science and technology, issue: Water Transport (Vol. 13). Moscow. Vershinin, S. A. (1988). Ice action on offshore structures. In Results of science and technology, issue: Water Transport (Vol. 13). Moscow.
2.
Zurück zum Zitat Sanderson, T. J. O. (1988). Ice mechanics—Risks to offshore structures. Graham and Trotman. Sanderson, T. J. O. (1988). Ice mechanics—Risks to offshore structures. Graham and Trotman.
3.
Zurück zum Zitat Schulson, E. M., & Duval, P. (2009). Creep and fracture of ice (p. 417). Cambridge University Press. Schulson, E. M., & Duval, P. (2009). Creep and fracture of ice (p. 417). Cambridge University Press.
4.
Zurück zum Zitat Schwarz, J., & Weeks, W. (1977). Engineering properties of sea ice. Journal of Glaciology, 19(81), 499–531.CrossRef Schwarz, J., & Weeks, W. (1977). Engineering properties of sea ice. Journal of Glaciology, 19(81), 499–531.CrossRef
5.
Zurück zum Zitat Sodhi, D. S. (2001). Crushing failure during ice-structure interaction. Engineering Fracture Mechanics, 68, 1889–1921.CrossRef Sodhi, D. S. (2001). Crushing failure during ice-structure interaction. Engineering Fracture Mechanics, 68, 1889–1921.CrossRef
6.
Zurück zum Zitat Timco, G. W., & Weeks, W. F. (2010). A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60, 107–129.CrossRef Timco, G. W., & Weeks, W. F. (2010). A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60, 107–129.CrossRef
7.
Zurück zum Zitat Sodhi, D. S. (1998). Vertical penetration of floating ice sheets. International Journal of Solids and Structures, 35(31–32), 4275–4294.CrossRef Sodhi, D. S. (1998). Vertical penetration of floating ice sheets. International Journal of Solids and Structures, 35(31–32), 4275–4294.CrossRef
8.
Zurück zum Zitat Marchenko, A., Karulin, E., Chistyakov, P., Sodhi, S., Karulina, M., & Sakharov, A. (2014). Three dimensional fracture effects in tests with cantilever and fixed ends beams. In Proceedings of the 22nd IAHR ice symposium. Singapore, ICE14-1178. Marchenko, A., Karulin, E., Chistyakov, P., Sodhi, S., Karulina, M., & Sakharov, A. (2014). Three dimensional fracture effects in tests with cantilever and fixed ends beams. In Proceedings of the 22nd IAHR ice symposium. Singapore, ICE14-1178.
9.
Zurück zum Zitat Sakharov, A., Karulin, E., Marchenko, A., Karulina, M., Sodhi, D., & Chistyakov, P. (2015). Failure envelope of the brittle strength of ice in the fixed-end beam test (two scenarios). In Proceedings of the 23rd international conference on port and ocean engineering under Arctic conditions. Trondheim, Norway. Sakharov, A., Karulin, E., Marchenko, A., Karulina, M., Sodhi, D., & Chistyakov, P. (2015). Failure envelope of the brittle strength of ice in the fixed-end beam test (two scenarios). In Proceedings of the 23rd international conference on port and ocean engineering under Arctic conditions. Trondheim, Norway.
10.
Zurück zum Zitat Enkvist, E., & Makinen, S. (1984). A fine-grain model-ice. In Proceedings IAHR ice symposium (Vol. 2, pp. 217–227). Hamburg, Germany. Enkvist, E., & Makinen, S. (1984). A fine-grain model-ice. In Proceedings IAHR ice symposium (Vol. 2, pp. 217–227). Hamburg, Germany.
11.
Zurück zum Zitat Evers, K.-U., & Jochmann, P. (1993). An advanced technique to improve the mechanical properties of model ice developed at the HSVA ice tank. In The 12th international conference on port and ocean engineering under arctic conditions, 17–20 August 1993 (Vol. 2, pp. 877–888). Hamburg. Evers, K.-U., & Jochmann, P. (1993). An advanced technique to improve the mechanical properties of model ice developed at the HSVA ice tank. In The 12th international conference on port and ocean engineering under arctic conditions, 17–20 August 1993 (Vol. 2, pp. 877–888). Hamburg.
12.
Zurück zum Zitat Nortala-Hoikkanen, A. (1990). FGX model ice at the Masa-Yards Arctic Research Centre. In IAHR ice symposium (pp. 247–259). Espoo, Finland. Nortala-Hoikkanen, A. (1990). FGX model ice at the Masa-Yards Arctic Research Centre. In IAHR ice symposium (pp. 247–259). Espoo, Finland.
13.
Zurück zum Zitat Timco, G. W. (1986). A new type of model ice for refrigerated towing tanks. Cold Regions Science and Technology, 12, 175–195.CrossRef Timco, G. W. (1986). A new type of model ice for refrigerated towing tanks. Cold Regions Science and Technology, 12, 175–195.CrossRef
14.
Zurück zum Zitat Von Bock und Polach, R., Ehlers, S., & Kujala, P. (2013). Model-scale ice—Part A: Experiments. Cold Regions Science and Technology, 94, 74–81.CrossRef Von Bock und Polach, R., Ehlers, S., & Kujala, P. (2013). Model-scale ice—Part A: Experiments. Cold Regions Science and Technology, 94, 74–81.CrossRef
15.
Zurück zum Zitat Karulin, E., Marchenko, A., Karulina, M., Chistyakov, P., Sakharov, A., Ervik, A., et al. (2014). Field indentation tests of vertical semi-cylinder on first-year ice. In Proceedings of the 22nd IAHR ice symposium 2014. Singapore, ICE14-1125. Karulin, E., Marchenko, A., Karulina, M., Chistyakov, P., Sakharov, A., Ervik, A., et al. (2014). Field indentation tests of vertical semi-cylinder on first-year ice. In Proceedings of the 22nd IAHR ice symposium 2014. Singapore, ICE14-1125.
16.
Zurück zum Zitat Experimental verification of theoretical approach for model ice failure mechanism in ice model basin. (1998). Technical report of KSRI. Issue 39545. Experimental verification of theoretical approach for model ice failure mechanism in ice model basin. (1998). Technical report of KSRI. Issue 39545.
17.
Zurück zum Zitat Method of ice cover simulation taking into account fracture toughness of ice. (1990). Technical report of KSRI. Issue 33141. Method of ice cover simulation taking into account fracture toughness of ice. (1990). Technical report of KSRI. Issue 33141.
18.
Zurück zum Zitat Shimansky, Yu. A. (1958). Handbook on ships mechanics (Vol. 1, p. 627). Leningrad. Shimansky, Yu. A. (1958). Handbook on ships mechanics (Vol. 1, p. 627). Leningrad.
Metadaten
Titel
Experimental Studies of Sea and Model Ice Fracture Mechanics
verfasst von
Marina Karulina
Alexey Marchenko
Alexandr Sakharov
Evgeny Karulin
Peter Chistyakov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_38