Skip to main content
Erschienen in: Fire Technology 5/2021

25.05.2021

Experimental Study on Effect of Tunnel Slope on Heat Release Rate with Heat Feedback Mechanism

verfasst von: Ji Tae Kim, Hong Sun Ryou

Erschienen in: Fire Technology | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heat release rate (HRR) is most important factor in the tunnel fire. Therefore, an accurate understanding of the relationship between tunnel fire and HRR is required. The HRR of a pool fire is related to the heat feedback mechanism. Heat feedback is mainly affected by the flow around the fire source. However, considering the flow characteristics that depend on the tunnel slope is insufficient. Therefore, in this study, the effect of flow with respect to the tunnel slope on the heat feedback was analyzed with an experimental method. The experiment was conducted with a reduced-scale shallow underground tunnel. The slope of the tunnel was limited to 0° to 7°, which corresponds to the construction standard. The ceiling jet and entrained-air flow were affected by the pool diameter and tunnel slope. Owing to the effect of the air entrainment, the ratio of the re-radiation heat flux incident on the fuel surface decreased linearly with increasing tunnel slope. Moreover, the re-radiation and re-convection ratios of the tunnel slope and pool pan size showed linear trends. Based on the analysis of the heat feedback mechanism, the empirical correlation for the effect of the tunnel slope on the HRR can be presented in terms of the re-radiation/re-convection fraction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alpert RL (2011) The fire-induced ceiling-jet revisited. In: 5th FireSeat symposium Alpert RL (2011) The fire-induced ceiling-jet revisited. In: 5th FireSeat symposium
2.
Zurück zum Zitat Heskestad G (1984) Engineering relations for fire plumes. Fire Saf J 7(1):25–32CrossRef Heskestad G (1984) Engineering relations for fire plumes. Fire Saf J 7(1):25–32CrossRef
3.
Zurück zum Zitat Lee SR, Ryou HS (2005) An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires. J Fire Sci 23(2):119–138CrossRef Lee SR, Ryou HS (2005) An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires. J Fire Sci 23(2):119–138CrossRef
4.
Zurück zum Zitat Lee SR, Ryou HS (2006) A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Build Environ 41(6):719–725CrossRef Lee SR, Ryou HS (2006) A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Build Environ 41(6):719–725CrossRef
5.
Zurück zum Zitat Oka Y, Imazeki O, Sugawa O (2010) Temperature profile of ceiling jet flow along an inclined unconfined ceiling. Fire Saf J 45(4):221–227CrossRef Oka Y, Imazeki O, Sugawa O (2010) Temperature profile of ceiling jet flow along an inclined unconfined ceiling. Fire Saf J 45(4):221–227CrossRef
6.
Zurück zum Zitat Oka Y, Kakae N, Imazeki O, Inagaki K (2013) Temperature property of ceiling jet in an inclined tunnel. Procedia Eng 62:234–241CrossRef Oka Y, Kakae N, Imazeki O, Inagaki K (2013) Temperature property of ceiling jet in an inclined tunnel. Procedia Eng 62:234–241CrossRef
7.
Zurück zum Zitat Oka Y, Imazeki O (2014) Temperature and velocity distributions of a ceiling jet along an inclined ceiling—Part 1: approximation with exponential function. Fire Saf J 65:41–52CrossRef Oka Y, Imazeki O (2014) Temperature and velocity distributions of a ceiling jet along an inclined ceiling—Part 1: approximation with exponential function. Fire Saf J 65:41–52CrossRef
8.
Zurück zum Zitat Oka Y, Imazeki O (2014) Temperature and velocity distributions of a ceiling jet along an inclined ceiling—Part 2: approximation based on cubic function and coordinate transformation. Fire Saf J 65:53–61CrossRef Oka Y, Imazeki O (2014) Temperature and velocity distributions of a ceiling jet along an inclined ceiling—Part 2: approximation based on cubic function and coordinate transformation. Fire Saf J 65:53–61CrossRef
9.
Zurück zum Zitat Oka Y, Imazeki O (2015) Temperature distribution within a ceiling jet propagating in an inclined flat-ceilinged tunnel with natural ventilation. Fire Saf J 71:20–33CrossRef Oka Y, Imazeki O (2015) Temperature distribution within a ceiling jet propagating in an inclined flat-ceilinged tunnel with natural ventilation. Fire Saf J 71:20–33CrossRef
10.
Zurück zum Zitat Oka Y, Oka H, Imazeki O (2016) Ceiling-jet thickness and vertical distribution along flat-ceilinged horizontal tunnel with natural ventilation. Tunn Undergr Sp Technol 53:68–77CrossRef Oka Y, Oka H, Imazeki O (2016) Ceiling-jet thickness and vertical distribution along flat-ceilinged horizontal tunnel with natural ventilation. Tunn Undergr Sp Technol 53:68–77CrossRef
11.
Zurück zum Zitat Chow WK, Gao Y, Zhao JH, Dang JF, Chow CL, Miao L (2015) Smoke movement in tilted tunnel fires with longitudinal ventilation. Fire Saf J 75:14–22CrossRef Chow WK, Gao Y, Zhao JH, Dang JF, Chow CL, Miao L (2015) Smoke movement in tilted tunnel fires with longitudinal ventilation. Fire Saf J 75:14–22CrossRef
12.
Zurück zum Zitat Chow WK, Gao Y, Zhao JH, Dang JF, Chow CL (2016) A study on tilted tunnel fire under natural ventilation. Fire Saf J 81:44–57CrossRef Chow WK, Gao Y, Zhao JH, Dang JF, Chow CL (2016) A study on tilted tunnel fire under natural ventilation. Fire Saf J 81:44–57CrossRef
13.
Zurück zum Zitat Ji J, Bi Y, Venkatasubbaiah K, Li K (2016) Influence of aspect ratio of tunnel on smoke temperature distribution under ceiling in near field of fire source. Appl Therm Eng 106:1094–1102CrossRef Ji J, Bi Y, Venkatasubbaiah K, Li K (2016) Influence of aspect ratio of tunnel on smoke temperature distribution under ceiling in near field of fire source. Appl Therm Eng 106:1094–1102CrossRef
14.
Zurück zum Zitat Kim JT, Hong KB, Ryou HS (2019) Numerical analysis on the effect of the tunnel slope on the plug-holing phenomena. Energies 12(1):59CrossRef Kim JT, Hong KB, Ryou HS (2019) Numerical analysis on the effect of the tunnel slope on the plug-holing phenomena. Energies 12(1):59CrossRef
15.
Zurück zum Zitat Spalding DB (1953) The combustion of liquid fuels. Symp Combust Proc 4(1):847–864CrossRef Spalding DB (1953) The combustion of liquid fuels. Symp Combust Proc 4(1):847–864CrossRef
16.
Zurück zum Zitat Quintiere JG (1997) Fire growth: an overview. Fire Technol 33(1):7–31CrossRef Quintiere JG (1997) Fire growth: an overview. Fire Technol 33(1):7–31CrossRef
17.
Zurück zum Zitat Hu L, Hu J, Liu S, Tang W, Zhang X (2015) Evolution of heat feedback in medium pool fires with cross air flow and scaling of mass burning flux by a stagnant layer theory solution. Proc Combust Inst 35(3):2511–2518CrossRef Hu L, Hu J, Liu S, Tang W, Zhang X (2015) Evolution of heat feedback in medium pool fires with cross air flow and scaling of mass burning flux by a stagnant layer theory solution. Proc Combust Inst 35(3):2511–2518CrossRef
18.
Zurück zum Zitat Hu L, Liu S, Wu L (2013) Flame radiation feedback to fuel surface in medium ethanol and heptane pool fires with cross air flow. Combust Flame 160(2):295–306CrossRef Hu L, Liu S, Wu L (2013) Flame radiation feedback to fuel surface in medium ethanol and heptane pool fires with cross air flow. Combust Flame 160(2):295–306CrossRef
19.
Zurück zum Zitat Hu L (2017) A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J 91:41–55CrossRef Hu L (2017) A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J 91:41–55CrossRef
20.
Zurück zum Zitat De Ris J, Orloff L (1972) A dimensionless correlation of pool burning data. Combust Flame 18(3):381–388CrossRef De Ris J, Orloff L (1972) A dimensionless correlation of pool burning data. Combust Flame 18(3):381–388CrossRef
21.
Zurück zum Zitat Hamins A, Fischer SJ, Kashiwagi T, Klassen ME, Gore JP (1994) Heat feedback to the fuel surface in pool fires. Combust Sci Technol 97(1–3):37–62CrossRef Hamins A, Fischer SJ, Kashiwagi T, Klassen ME, Gore JP (1994) Heat feedback to the fuel surface in pool fires. Combust Sci Technol 97(1–3):37–62CrossRef
22.
Zurück zum Zitat Holman JP (2001) Experimental methods for engineers. The McGraw-Hill Companies Inc, New York Holman JP (2001) Experimental methods for engineers. The McGraw-Hill Companies Inc, New York
23.
Zurück zum Zitat Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, West SussexCrossRef Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, West SussexCrossRef
24.
Zurück zum Zitat Yao Y, Li YZ, Ingason H, Cheng X, Zhang H (2020) Theoretical and numerical study on influence of wind on mass loss rates of heptane pool fires at different scales. Fire Saf J 120:103048CrossRef Yao Y, Li YZ, Ingason H, Cheng X, Zhang H (2020) Theoretical and numerical study on influence of wind on mass loss rates of heptane pool fires at different scales. Fire Saf J 120:103048CrossRef
25.
Zurück zum Zitat Quintiere JG (1989) Scaling applications in fire research. Fire Saf J 15(1):3–29CrossRef Quintiere JG (1989) Scaling applications in fire research. Fire Saf J 15(1):3–29CrossRef
26.
Zurück zum Zitat Hottel HC (1961) Fire modeling. In: The use of models in fire research. Publication 786 National Academy of Sciences—NRC Washington, DC, pp 32–47 Hottel HC (1961) Fire modeling. In: The use of models in fire research. Publication 786 National Academy of Sciences—NRC Washington, DC, pp 32–47
27.
Zurück zum Zitat Heskestad G (1972) Similarity relations for the initial convective flow generated by fire. ASME Paper, (72-WA), 1113 Heskestad G (1972) Similarity relations for the initial convective flow generated by fire. ASME Paper, (72-WA), 1113
28.
Zurück zum Zitat De Ris JL, Wu PK, Heskestad G (2000) Radiation fire modeling. Proc Combust Inst 28(2):2751–2759CrossRef De Ris JL, Wu PK, Heskestad G (2000) Radiation fire modeling. Proc Combust Inst 28(2):2751–2759CrossRef
Metadaten
Titel
Experimental Study on Effect of Tunnel Slope on Heat Release Rate with Heat Feedback Mechanism
verfasst von
Ji Tae Kim
Hong Sun Ryou
Publikationsdatum
25.05.2021
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2021
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-021-01141-x

Weitere Artikel der Ausgabe 5/2021

Fire Technology 5/2021 Zur Ausgabe