Skip to main content

2023 | OriginalPaper | Buchkapitel

Explaining Black Box Reinforcement Learning Agents Through Counterfactual Policies

verfasst von : Maria Movin, Guilherme Dinis Junior, Jaakko Hollmén, Panagiotis Papapetrou

Erschienen in: Advances in Intelligent Data Analysis XXI

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite the increased attention to explainable AI, explainability methods for understanding reinforcement learning (RL) agents have not been extensively studied. Failing to understand the agent’s behavior may cause reduced productivity in human-agent collaborations, or mistrust in automated RL systems. RL agents are trained to optimize a long term cumulative reward, and in this work we formulate a novel problem on how to generate explanations on when an agent could have taken another action to optimize an alternative reward. More concretely, we aim at answering the question: What does an RL agent need to do differently to achieve an alternative target outcome? We introduce the concept of a counterfactual policy, as a policy trained to explain in which states a black box agent could have taken an alternative action to achieve another desired outcome. The usefulness of counterfactual policies is demonstrated in two experiments with different use-cases, and the results suggest that our solution can provide interpretable explanations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Afsar, M.M., Crump, T., Far, B.: Reinforcement learning based recommender systems: a survey. ACM Comput. Surv. 55(7), 1–38 (2021)CrossRef Afsar, M.M., Crump, T., Far, B.: Reinforcement learning based recommender systems: a survey. ACM Comput. Surv. 55(7), 1–38 (2021)CrossRef
2.
Zurück zum Zitat Amitai, Y., Amir, O.: Summarizing policy disagreements for agent comparison. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence (2022) Amitai, Y., Amir, O.: Summarizing policy disagreements for agent comparison. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence (2022)
3.
Zurück zum Zitat Frost, J., Watkins, O., Weiner, E., et al.: Explaining reinforcement learning policies through counterfactual trajectories. arXiv preprint arXiv:2201.12462v1 (2021) Frost, J., Watkins, O., Weiner, E., et al.: Explaining reinforcement learning policies through counterfactual trajectories. arXiv preprint arXiv:​2201.​12462v1 (2021)
4.
Zurück zum Zitat Heuillet, A., Couthouis, F., Díaz-Rodríguez, N.: Explainability in deep reinforcement learning. Knowl.-Based Syst. 214, 106685 (2021)CrossRef Heuillet, A., Couthouis, F., Díaz-Rodríguez, N.: Explainability in deep reinforcement learning. Knowl.-Based Syst. 214, 106685 (2021)CrossRef
5.
Zurück zum Zitat Huang, S.H., Bhatia, K., Abbeel, P., Dragan, A.D.: Establishing appropriate trust via critical states. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3929–3936. IEEE (2018) Huang, S.H., Bhatia, K., Abbeel, P., Dragan, A.D.: Establishing appropriate trust via critical states. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3929–3936. IEEE (2018)
6.
Zurück zum Zitat Karimi, A.H., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse: contrastive explanations and consequential recommendations. ACM Comput. Surv. 55(5), 1–29 (2022)CrossRef Karimi, A.H., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse: contrastive explanations and consequential recommendations. ACM Comput. Surv. 55(5), 1–29 (2022)CrossRef
7.
Zurück zum Zitat Laugel, T., Lesot, M.J., Marsala, C., Detyniecki, M.: Issues with post-hoc counterfactual explanations: a discussion. arXiv preprint arXiv:1906.04774 (2019) Laugel, T., Lesot, M.J., Marsala, C., Detyniecki, M.: Issues with post-hoc counterfactual explanations: a discussion. arXiv preprint arXiv:​1906.​04774 (2019)
8.
Zurück zum Zitat Liu, S., See, K.C., Ngiam, K.Y., Celi, L.A., Sun, X., Feng, M.: Reinforcement learning for clinical decision support in critical care: comprehensive review. J. Med. Internet Res. 22(7), e18477 (2020)CrossRef Liu, S., See, K.C., Ngiam, K.Y., Celi, L.A., Sun, X., Feng, M.: Reinforcement learning for clinical decision support in critical care: comprehensive review. J. Med. Internet Res. 22(7), e18477 (2020)CrossRef
9.
Zurück zum Zitat Olson, M.L., Khanna, R., Neal, L., Li, F., Wong, W.K.: Counterfactual state explanations for reinforcement learning agents via generative deep learning. Artif. Intell. 295, 103455 (2021)MathSciNetCrossRefMATH Olson, M.L., Khanna, R., Neal, L., Li, F., Wong, W.K.: Counterfactual state explanations for reinforcement learning agents via generative deep learning. Artif. Intell. 295, 103455 (2021)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)CrossRef Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)CrossRef
11.
Zurück zum Zitat Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction, 2nd edn. Adaptive Computation and Machine Learning Series, The MIT Press (2018) Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction, 2nd edn. Adaptive Computation and Machine Learning Series, The MIT Press (2018)
12.
Zurück zum Zitat Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. L. Tech. 31, 841 (2017) Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. L. Tech. 31, 841 (2017)
Metadaten
Titel
Explaining Black Box Reinforcement Learning Agents Through Counterfactual Policies
verfasst von
Maria Movin
Guilherme Dinis Junior
Jaakko Hollmén
Panagiotis Papapetrou
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-30047-9_25

Premium Partner