Skip to main content

2011 | OriginalPaper | Buchkapitel

Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy

verfasst von : Constanze Lamprecht, Andreas Ebner, Ferry Kienberger, Peter Hinterdorfer

Erschienen in: Carbon Nanotubes for Biomedical Applications

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At present, atomic force microscopy (AFM) offers a unique solution to study biological specimens on the nanometer scale under near-physiological conditions without the need for rigorous sample preparation, staining or labelling. We expect new and significant biophysical insights into the delivery process and transport mechanism of CNTs into cells employing AFM. Here we give an overview for the application of AFM to characterize and assess CNT surface bio-functionalization. Moreover, we show how topographic AFM imaging can be used to study the binding of functionalized single walled carbon nanotubes (SWCNTs), double walled carbon nanotubes (DWCNTs) and multi walled carbon nanotubes (MWCNTs) to various relevant biological membranes, including nuclear membranes and cell surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)CrossRef Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)CrossRef
2.
Zurück zum Zitat Horber, J.K.H., Miles, M.J.: Scanning probe evolution in biology. Science 302(5647), 1002–1005 (2003)CrossRef Horber, J.K.H., Miles, M.J.: Scanning probe evolution in biology. Science 302(5647), 1002–1005 (2003)CrossRef
3.
Zurück zum Zitat Muller, D.J., et al.: Observing structure, function and assembly of single proteins by AFM. Prog. Biophys. Mol. Biol. 79(1–3), 1–43 (2002)CrossRef Muller, D.J., et al.: Observing structure, function and assembly of single proteins by AFM. Prog. Biophys. Mol. Biol. 79(1–3), 1–43 (2002)CrossRef
4.
Zurück zum Zitat Scheuring, S., Levy, D., Rigaud, J.L.: Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim. Biophys. Acta Biomembr. 1712(2), 109–127 (2005)CrossRef Scheuring, S., Levy, D., Rigaud, J.L.: Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim. Biophys. Acta Biomembr. 1712(2), 109–127 (2005)CrossRef
5.
Zurück zum Zitat Jeremic, A., et al.: Reconstituted fusion pore. Biophys. J. 85(3), 2035–2043 (2003)CrossRef Jeremic, A., et al.: Reconstituted fusion pore. Biophys. J. 85(3), 2035–2043 (2003)CrossRef
6.
Zurück zum Zitat Franz, C.M., Muller, D.J.: Analyzing focal adhesion structure by atomic force microscopy. J. Cell Sci. 118(22), 5315–5323 (2005)CrossRef Franz, C.M., Muller, D.J.: Analyzing focal adhesion structure by atomic force microscopy. J. Cell Sci. 118(22), 5315–5323 (2005)CrossRef
7.
Zurück zum Zitat Zaman, M.S., et al.: Imaging and analysis of Bacillus anthracis spore germination. Microsc. Res. Tech. 66(6), 307–311 (2005)CrossRef Zaman, M.S., et al.: Imaging and analysis of Bacillus anthracis spore germination. Microsc. Res. Tech. 66(6), 307–311 (2005)CrossRef
8.
Zurück zum Zitat Allison, D.P., Hinterdorfer, P., Han, W.H.: Biomolecular force measurements and the atomic force microscope. Curr. Opin. Biotechnol. 13(1), 47–51 (2002)CrossRef Allison, D.P., Hinterdorfer, P., Han, W.H.: Biomolecular force measurements and the atomic force microscope. Curr. Opin. Biotechnol. 13(1), 47–51 (2002)CrossRef
9.
Zurück zum Zitat Kienberger, F., et al.: Molecular recognition imaging and force spectroscopy of single biomolecules. Acc. Chem. Res. 39(1), 29–36 (2006)CrossRef Kienberger, F., et al.: Molecular recognition imaging and force spectroscopy of single biomolecules. Acc. Chem. Res. 39(1), 29–36 (2006)CrossRef
10.
Zurück zum Zitat Lamprecht, C., et al.: AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20(43), 7 pp. (2009) Article Nr.: 434001CrossRef Lamprecht, C., et al.: AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20(43), 7 pp. (2009) Article Nr.: 434001CrossRef
11.
Zurück zum Zitat Hoh, J.H., et al.: Structure of the extracellular surface of the gap junction by atomic-force microscopy. Biophys. J. 65(1), 149–163 (1993)MathSciNetCrossRef Hoh, J.H., et al.: Structure of the extracellular surface of the gap junction by atomic-force microscopy. Biophys. J. 65(1), 149–163 (1993)MathSciNetCrossRef
12.
Zurück zum Zitat Muller, D.J., et al.: Imaging purple membranes in aqueous-solutions at subnanometer resolution by atomic-force microscopy. Biophys. J. 68(5), 1681–1686 (1995)CrossRef Muller, D.J., et al.: Imaging purple membranes in aqueous-solutions at subnanometer resolution by atomic-force microscopy. Biophys. J. 68(5), 1681–1686 (1995)CrossRef
13.
Zurück zum Zitat Schabert, F.A., Henn, C., Engel, A.: Native Escherichia coli Ompf porin surfaces probed by atomic-force microscopy. Science 268(5207), 92–94 (1995)CrossRef Schabert, F.A., Henn, C., Engel, A.: Native Escherichia coli Ompf porin surfaces probed by atomic-force microscopy. Science 268(5207), 92–94 (1995)CrossRef
14.
Zurück zum Zitat Kienberger, F., et al.: Dynamic force microscopy imaging of native membranes. Ultramicroscopy 97(1–4), 229–237 (2003)CrossRef Kienberger, F., et al.: Dynamic force microscopy imaging of native membranes. Ultramicroscopy 97(1–4), 229–237 (2003)CrossRef
15.
Zurück zum Zitat Putman, C.A.J., et al.: Tapping mode atomic-force microscopy in liquid. Appl. Phys. Lett. 64(18), 2454–2456 (1994)CrossRef Putman, C.A.J., et al.: Tapping mode atomic-force microscopy in liquid. Appl. Phys. Lett. 64(18), 2454–2456 (1994)CrossRef
16.
Zurück zum Zitat Han, W.H., et al.: Kinked DNA. Nature 386(6625), 563–563 (1997) Han, W.H., et al.: Kinked DNA. Nature 386(6625), 563–563 (1997)
17.
Zurück zum Zitat Marti, O., Drake, B., Hansma, P.K.: Atomic force microscopy of liquid-covered surfaces—atomic resolution images. Appl. Phys. Lett. 51(7), 484–486 (1987)CrossRef Marti, O., Drake, B., Hansma, P.K.: Atomic force microscopy of liquid-covered surfaces—atomic resolution images. Appl. Phys. Lett. 51(7), 484–486 (1987)CrossRef
18.
Zurück zum Zitat Muller, D.J., et al.: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76(2), 1101–1111 (1999)CrossRef Muller, D.J., et al.: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76(2), 1101–1111 (1999)CrossRef
19.
Zurück zum Zitat Becker, M.L., et al.: Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19(7), 939 (2007)CrossRef Becker, M.L., et al.: Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19(7), 939 (2007)CrossRef
20.
Zurück zum Zitat Jeynes, J.C.G., et al.: Generation of chemically unmodified pure single-walled carbon nanotubes by solubilizing with RNA and treatment with ribonuclease A. Adv. Mater. 18(12), 1598–1602 (2006)CrossRef Jeynes, J.C.G., et al.: Generation of chemically unmodified pure single-walled carbon nanotubes by solubilizing with RNA and treatment with ribonuclease A. Adv. Mater. 18(12), 1598–1602 (2006)CrossRef
21.
Zurück zum Zitat Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–581 (2006)CrossRef Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–581 (2006)CrossRef
22.
Zurück zum Zitat Zheng, M., et al.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2(5), 338–342 (2003)CrossRef Zheng, M., et al.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2(5), 338–342 (2003)CrossRef
23.
Zurück zum Zitat Chen, R.J., et al.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100(9), 4984–4989 (2003)CrossRef Chen, R.J., et al.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100(9), 4984–4989 (2003)CrossRef
24.
Zurück zum Zitat Kam, N.W., Dai, H.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16), 6021–6026 (2005)CrossRef Kam, N.W., Dai, H.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16), 6021–6026 (2005)CrossRef
25.
Zurück zum Zitat Nepal, D., Geckeler, K.E.: Proteins and carbon nanotubes: close encounter in water. Small 3(7), 1259–1265 (2007)CrossRef Nepal, D., Geckeler, K.E.: Proteins and carbon nanotubes: close encounter in water. Small 3(7), 1259–1265 (2007)CrossRef
26.
Zurück zum Zitat Shim, M., et al.: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4), 285–288 (2002)CrossRef Shim, M., et al.: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4), 285–288 (2002)CrossRef
27.
Zurück zum Zitat Strano, M.S., et al.: The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 81–86 (2003)CrossRef Strano, M.S., et al.: The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 81–86 (2003)CrossRef
28.
Zurück zum Zitat Valenti, L.E., et al.: The adsorption-desorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interf. Sci. 307(2), 349–356 (2007)CrossRef Valenti, L.E., et al.: The adsorption-desorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interf. Sci. 307(2), 349–356 (2007)CrossRef
29.
Zurück zum Zitat Vyalikh, A., et al.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine 3(3), 321–327 (2008)CrossRef Vyalikh, A., et al.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine 3(3), 321–327 (2008)CrossRef
30.
Zurück zum Zitat Zorbas, V., et al.: Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 126(23), 7222–7227 (2004)CrossRef Zorbas, V., et al.: Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 126(23), 7222–7227 (2004)CrossRef
31.
Zurück zum Zitat Liu, Z., et al.: siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46(12), 2023–2027 (2007)CrossRef Liu, Z., et al.: siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46(12), 2023–2027 (2007)CrossRef
32.
Zurück zum Zitat Moore, V.C., et al.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003)CrossRef Moore, V.C., et al.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003)CrossRef
33.
Zurück zum Zitat Nakayama-Ratchford, N., et al.: Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 129(9), 2448–2449 (2007)CrossRef Nakayama-Ratchford, N., et al.: Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 129(9), 2448–2449 (2007)CrossRef
34.
Zurück zum Zitat O’Connell, M.J., et al.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001)CrossRef O’Connell, M.J., et al.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001)CrossRef
35.
Zurück zum Zitat Petrov, P., et al.: Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem. Commun. 23, 2904–2905 (2003)CrossRef Petrov, P., et al.: Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem. Commun. 23, 2904–2905 (2003)CrossRef
36.
Zurück zum Zitat Prencipe, G., et al.: PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 131(13), 4783–4787 (2009)CrossRef Prencipe, G., et al.: PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 131(13), 4783–4787 (2009)CrossRef
37.
Zurück zum Zitat Richard, C., et al.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300(5620), 775–778 (2003)CrossRef Richard, C., et al.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300(5620), 775–778 (2003)CrossRef
38.
Zurück zum Zitat Lamprecht, C., et al.: AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy 109(8), 899–906 (2009)CrossRef Lamprecht, C., et al.: AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy 109(8), 899–906 (2009)CrossRef
39.
Zurück zum Zitat Bahr, J.L., Tour, J.M.: Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12(7), 1952–1958 (2002)CrossRef Bahr, J.L., Tour, J.M.: Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12(7), 1952–1958 (2002)CrossRef
40.
Zurück zum Zitat Hou, P.X., Liu, C., Cheng, H.M.: Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)CrossRef Hou, P.X., Liu, C., Cheng, H.M.: Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)CrossRef
41.
Zurück zum Zitat Klein, K.L., et al.: Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103(6), (2008) Klein, K.L., et al.: Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103(6), (2008)
42.
Zurück zum Zitat Lin, T., et al.: Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635–651 (2003)CrossRef Lin, T., et al.: Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635–651 (2003)CrossRef
43.
Zurück zum Zitat Martinez, M.T., et al.: Modifications of single-wall carbon nanotubes upon oxidative purification treatments. Nanotechnology 14(7), 691–695 (2003)CrossRef Martinez, M.T., et al.: Modifications of single-wall carbon nanotubes upon oxidative purification treatments. Nanotechnology 14(7), 691–695 (2003)CrossRef
44.
Zurück zum Zitat Sinnott, S.B.: Chemical functionalization of carbon nanotubes. J. Nanosci. Nanotechnol. 2(2), 113–123 (2002)CrossRef Sinnott, S.B.: Chemical functionalization of carbon nanotubes. J. Nanosci. Nanotechnol. 2(2), 113–123 (2002)CrossRef
45.
Zurück zum Zitat Zhang, J., et al.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107(16), 3712–3718 (2003)CrossRef Zhang, J., et al.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107(16), 3712–3718 (2003)CrossRef
46.
Zurück zum Zitat Nagasawa, S., et al.: Effect of oxidation on single-wall carbon nanotubes. Chem. Phys. Lett. 328(4–6), 374–380 (2000)CrossRef Nagasawa, S., et al.: Effect of oxidation on single-wall carbon nanotubes. Chem. Phys. Lett. 328(4–6), 374–380 (2000)CrossRef
47.
Zurück zum Zitat Hu, H., et al.: Nitric Acid Purification of Single-Walled Carbon Nanotubes. Phys Chem. B 107(50), 13838 (2003)CrossRef Hu, H., et al.: Nitric Acid Purification of Single-Walled Carbon Nanotubes. Phys Chem. B 107(50), 13838 (2003)CrossRef
48.
Zurück zum Zitat Rosca, I.D., et al.: Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15), 3124–3131 (2005)CrossRef Rosca, I.D., et al.: Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15), 3124–3131 (2005)CrossRef
49.
Zurück zum Zitat Verdejo, R., et al.: Removal of oxidation debris from multi-walled carbon nanotubes. Chem. Commun. 5, 513–515 (2007)CrossRef Verdejo, R., et al.: Removal of oxidation debris from multi-walled carbon nanotubes. Chem. Commun. 5, 513–515 (2007)CrossRef
50.
Zurück zum Zitat Heister, E. et al.: Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. Acs. Nano. 4, 2615–2626 (2010)CrossRef Heister, E. et al.: Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. Acs. Nano. 4, 2615–2626 (2010)CrossRef
51.
Zurück zum Zitat Portney, N.G., Ozkan, M.: Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 384(3), 620–630 (2006)CrossRef Portney, N.G., Ozkan, M.: Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 384(3), 620–630 (2006)CrossRef
52.
Zurück zum Zitat Prato, M., Kostarelos, K., Bianco, A.: Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41(1), 60–68 (2008)CrossRef Prato, M., Kostarelos, K., Bianco, A.: Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41(1), 60–68 (2008)CrossRef
53.
Zurück zum Zitat Kamruzzahan, A.S.M., et al.: Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconj. Chem. 17(6), 1473–1481 (2006)CrossRef Kamruzzahan, A.S.M., et al.: Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconj. Chem. 17(6), 1473–1481 (2006)CrossRef
54.
Zurück zum Zitat Porter, A.E., et al.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007)CrossRef Porter, A.E., et al.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007)CrossRef
55.
Zurück zum Zitat Suntharalingam, M., Wente, S.R.: Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4(6), 775–789 (2003)CrossRef Suntharalingam, M., Wente, S.R.: Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4(6), 775–789 (2003)CrossRef
56.
Zurück zum Zitat Kramer, A., et al.: A pathway separate from the central channel through the nuclear pore complex for inorganic ions and small macromolecules. J. Biol. Chem. 282(43), 31437–31443 (2007)CrossRef Kramer, A., et al.: A pathway separate from the central channel through the nuclear pore complex for inorganic ions and small macromolecules. J. Biol. Chem. 282(43), 31437–31443 (2007)CrossRef
57.
Zurück zum Zitat Chen, X., et al.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128(19), 6292–6293 (2006)CrossRef Chen, X., et al.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128(19), 6292–6293 (2006)CrossRef
58.
Zurück zum Zitat Kam, N.W.S., et al.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102(33), 11600–11605 (2005)CrossRef Kam, N.W.S., et al.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102(33), 11600–11605 (2005)CrossRef
59.
Zurück zum Zitat Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)CrossRef Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)CrossRef
60.
Zurück zum Zitat Lacerda, L., et al.: Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2(6), 38–43 (2007)CrossRef Lacerda, L., et al.: Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2(6), 38–43 (2007)CrossRef
61.
Zurück zum Zitat Pantarotto, D., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004)CrossRef Pantarotto, D., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004)CrossRef
62.
Zurück zum Zitat Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)CrossRef Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)CrossRef
63.
Zurück zum Zitat Madl, J., et al.: A combined optical and atomic force microscope for live cell investigations. Ultramicroscopy 106(8–9), 645–651 (2006)CrossRef Madl, J., et al.: A combined optical and atomic force microscope for live cell investigations. Ultramicroscopy 106(8–9), 645–651 (2006)CrossRef
64.
Zurück zum Zitat Ebner, A., et al.: Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. Nanotechnology 19(38) 6 pp. (2008) Article Nr. : 384017CrossRef Ebner, A., et al.: Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. Nanotechnology 19(38) 6 pp. (2008) Article Nr. : 384017CrossRef
65.
Zurück zum Zitat Tang, J.L., et al.: High-affinity tags fused to S-layer proteins probed by atomic force microscopy. Langmuir 24(4), 1324–1329 (2008)CrossRef Tang, J.L., et al.: High-affinity tags fused to S-layer proteins probed by atomic force microscopy. Langmuir 24(4), 1324–1329 (2008)CrossRef
Metadaten
Titel
Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy
verfasst von
Constanze Lamprecht
Andreas Ebner
Ferry Kienberger
Peter Hinterdorfer
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_8

Neuer Inhalt