Skip to main content
Erschienen in: Journal of Scientific Computing 3/2020

01.06.2020

Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations

verfasst von: Lu Zhang, Qifeng Zhang, Hai-Wei Sun

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we study numerically two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equations. A centered finite difference method is exploited to discretize the spatial variables and leads to a system of the ordinary differential equation, in which the resulting coefficient matrix is complex symmetric and possesses the block Toeplitz structure. An exponential Runge–Kutta method is employed to solve such a system of the ordinary differential equation. Theoretically, the proposed method is second-order accuracy in space and fourth-order accuracy in time, respectively. In the practical implementation, the product of a block Toeplitz matrix exponential and a vector is calculated by the shift-invert Lanczos method. Meanwhile, the sectorial operator (the coefficient matrix) guarantees the fast approximation by the shift-invert Lanczos method. Numerical experiments are carried out to testify the theoretical results and demonstrate that the proposed method enjoys the excellent computational advantage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Arshed, S.: Soliton solutions of fractional complex Ginzburg–Landau equation with Kerr law and non-Kerr law media. Optik 160, 322–332 (2018)CrossRef Arshed, S.: Soliton solutions of fractional complex Ginzburg–Landau equation with Kerr law and non-Kerr law media. Optik 160, 322–332 (2018)CrossRef
3.
Zurück zum Zitat Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetMATHCrossRef Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef
7.
Zurück zum Zitat Du, Q., Gunzburger, M.D., Peterson, J.S.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34, 54–81 (1992)MathSciNetMATHCrossRef Du, Q., Gunzburger, M.D., Peterson, J.S.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34, 54–81 (1992)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950) Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)
9.
Zurück zum Zitat Gohberg, I., Semencul, A.: On the inversion of finite Toeplitz matrices and their continuous analogs. Matem. Issled. 2, 201–233 (1972)MATH Gohberg, I., Semencul, A.: On the inversion of finite Toeplitz matrices and their continuous analogs. Matem. Issled. 2, 201–233 (1972)MATH
10.
Zurück zum Zitat Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)MathSciNetMATH Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)MathSciNetMATH
11.
Zurück zum Zitat Guo, B.L., Huo, Z.H.: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation. Fract. Calc. Appl. Anal. 16, 226–242 (2013)MathSciNetMATH Guo, B.L., Huo, Z.H.: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation. Fract. Calc. Appl. Anal. 16, 226–242 (2013)MathSciNetMATH
12.
Zurück zum Zitat He, D., Pan, K.: An unconditionally stable linearized difference scheme for the fractional Ginzburg–Landau equation. Numer. Algorithms 79, 899–925 (2018)MathSciNetMATHCrossRef He, D., Pan, K.: An unconditionally stable linearized difference scheme for the fractional Ginzburg–Landau equation. Numer. Algorithms 79, 899–925 (2018)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Heinig, G., Rost, L.: Algebraic Methods for Toeplitz-like Matrices and Operators. Birkhäuser, Basel (1984)MATHCrossRef Heinig, G., Rost, L.: Algebraic Methods for Toeplitz-like Matrices and Operators. Birkhäuser, Basel (1984)MATHCrossRef
14.
Zurück zum Zitat Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)MATHCrossRef Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)MATHCrossRef
15.
Zurück zum Zitat Hochbruck, M., Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Appl. Numer. Math. 53, 323–339 (2005)MathSciNetMATHCrossRef Hochbruck, M., Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Appl. Numer. Math. 53, 323–339 (2005)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef
18.
Zurück zum Zitat Jin, X.: Developments and Applications of Block Toeplitz Iterative Solvers. Kluwer, Dordrecht (2002) Jin, X.: Developments and Applications of Block Toeplitz Iterative Solvers. Kluwer, Dordrecht (2002)
19.
22.
23.
Zurück zum Zitat Lee, S., Liu, X., Sun, H.: Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19, 87–101 (2012)MathSciNetMATHCrossRef Lee, S., Liu, X., Sun, H.: Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19, 87–101 (2012)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MathSciNetMATHCrossRef Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Li, M., Huang, C.M.: An efficient difference scheme for the coupled nonlinear fractional Ginzburg–Landau equations with the fractional Laplacian. Numer. Methods Part. Differ. Equ. 35, 394–421 (2019)MathSciNetMATHCrossRef Li, M., Huang, C.M.: An efficient difference scheme for the coupled nonlinear fractional Ginzburg–Landau equations with the fractional Laplacian. Numer. Methods Part. Differ. Equ. 35, 394–421 (2019)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Li, M., Huang, C.M., Wang, N.: Galerkin element method for the nonlinear fractional Ginzburg–Landau equation. Appl. Numer. Math. 118, 131–149 (2017)MathSciNetMATHCrossRef Li, M., Huang, C.M., Wang, N.: Galerkin element method for the nonlinear fractional Ginzburg–Landau equation. Appl. Numer. Math. 118, 131–149 (2017)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Lu, H., Bates, P.W., Lü, S.J., Zhang, M.J.: Dynamics of the 3-D fractional complex Ginzburg–Landau equation. J. Differ. Equ. 259, 5276–5301 (2015)MathSciNetMATHCrossRef Lu, H., Bates, P.W., Lü, S.J., Zhang, M.J.: Dynamics of the 3-D fractional complex Ginzburg–Landau equation. J. Differ. Equ. 259, 5276–5301 (2015)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Lu, H., Lü, S.J.: Asymptotic dynamics of 2D fractional complex Ginzburg–Landau equation. Int. J. Bifurc. Chaos 23, 1350202 (2013)MathSciNetMATHCrossRef Lu, H., Lü, S.J.: Asymptotic dynamics of 2D fractional complex Ginzburg–Landau equation. Int. J. Bifurc. Chaos 23, 1350202 (2013)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Lu, H., Lü, S.J.: Random attractor for fractional Ginzburg–Landau equation with multiplicative noise. Taiwan. J. Math. 18, 435–450 (2014)MathSciNetMATHCrossRef Lu, H., Lü, S.J.: Random attractor for fractional Ginzburg–Landau equation with multiplicative noise. Taiwan. J. Math. 18, 435–450 (2014)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Lu, H., Lü, S.J., Zhang, M.J.: Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg–Landau equation. Discrete Contion. Dyn. Syst. 37, 2539–2564 (2017)MathSciNetMATHCrossRef Lu, H., Lü, S.J., Zhang, M.J.: Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg–Landau equation. Discrete Contion. Dyn. Syst. 37, 2539–2564 (2017)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Millot, V., Sire, Y.: On a fractional Ginzburg–Landau equation and \(1/2\)-Harmonic maps into spheres. Arch. Ration. Mech. Anal. 215, 125–210 (2015)MathSciNetMATHCrossRef Millot, V., Sire, Y.: On a fractional Ginzburg–Landau equation and \(1/2\)-Harmonic maps into spheres. Arch. Ration. Mech. Anal. 215, 125–210 (2015)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Milovanov, A., Rasmussen, J.: Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337, 75–80 (2005)MATHCrossRef Milovanov, A., Rasmussen, J.: Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337, 75–80 (2005)MATHCrossRef
33.
Zurück zum Zitat Mohebbi, A.: Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg–Landau equation. Eur. Phys. J. Plus 133, 67 (2018)CrossRef Mohebbi, A.: Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg–Landau equation. Eur. Phys. J. Plus 133, 67 (2018)CrossRef
34.
35.
Zurück zum Zitat Mvogo, A., Tambue, A., Ben-Bolie, G., Kofane, T.: Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Landau equation. Commun. Nonlinear Sci. 39, 396–410 (2016)MathSciNetCrossRef Mvogo, A., Tambue, A., Ben-Bolie, G., Kofane, T.: Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Landau equation. Commun. Nonlinear Sci. 39, 396–410 (2016)MathSciNetCrossRef
36.
Zurück zum Zitat Owolabi, K.M., Patidar, K.C.: Higher-order time-stepping methods for time-dependent reaction–diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)MathSciNetMATH Owolabi, K.M., Patidar, K.C.: Higher-order time-stepping methods for time-dependent reaction–diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)MathSciNetMATH
37.
Zurück zum Zitat Pang, H., Sun, H.: Fast exponential time integration for pricing options in stochastic volatility jump diffusion models. East Asian J. Appl. Math. 4, 53–68 (2014)MathSciNetMATHCrossRef Pang, H., Sun, H.: Fast exponential time integration for pricing options in stochastic volatility jump diffusion models. East Asian J. Appl. Math. 4, 53–68 (2014)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Pang, H., Sun, H.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18, 603–614 (2011)MathSciNetMATHCrossRef Pang, H., Sun, H.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18, 603–614 (2011)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Pu, X.K., Guo, B.L.: Well-posedness and dynamics for the fractional Ginzburg–Landau equation. Appl. Anal. 92, 31–33 (2013)MathSciNetMATHCrossRef Pu, X.K., Guo, B.L.: Well-posedness and dynamics for the fractional Ginzburg–Landau equation. Appl. Anal. 92, 31–33 (2013)MathSciNetMATHCrossRef
40.
41.
Zurück zum Zitat Shu, J., Li, P., Zhang, J., Liao, O.: Random attractors for the stochastic coupled fractional Ginzburg–Landau equation with additive noise. J. Math. Phys. 56, 102702 (2015)MathSciNetMATHCrossRef Shu, J., Li, P., Zhang, J., Liao, O.: Random attractors for the stochastic coupled fractional Ginzburg–Landau equation with additive noise. J. Math. Phys. 56, 102702 (2015)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Tarasov, V., Zaslavsky, G.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005)CrossRef Tarasov, V., Zaslavsky, G.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005)CrossRef
43.
44.
Zurück zum Zitat Van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27, 1438–1457 (2006)MathSciNetMATHCrossRef Van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27, 1438–1457 (2006)MathSciNetMATHCrossRef
45.
Zurück zum Zitat Wang, N., Huang, C.M.: An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg–Landau equations. Comput. Math. Appl. 75, 2223–2242 (2018)MathSciNetMATHCrossRef Wang, N., Huang, C.M.: An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg–Landau equations. Comput. Math. Appl. 75, 2223–2242 (2018)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Wang, P., Huang, C.M.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)MathSciNetMATHCrossRef Wang, P., Huang, C.M.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Wang, P., Huang, C.M.: An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation. J. Comput. Phys. 312, 31–49 (2016)MathSciNetMATHCrossRef Wang, P., Huang, C.M.: An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation. J. Comput. Phys. 312, 31–49 (2016)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Wang, P., Huang, C.M.: An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg–Landau equation. BIT Numer. Math. 58, 783–805 (2018)MathSciNetMATHCrossRef Wang, P., Huang, C.M.: An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg–Landau equation. BIT Numer. Math. 58, 783–805 (2018)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130–143 (2015)MathSciNetMATHCrossRef Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130–143 (2015)MathSciNetMATHCrossRef
50.
Zurück zum Zitat Zhang, M., Zhang, G.F., Liao, L.D.: Fast iterative solvers and simulation for the space fractional Ginzburg–Landau equations. Comput. Math. Appl. 78, 1793–1800 (2019)MathSciNetCrossRef Zhang, M., Zhang, G.F., Liao, L.D.: Fast iterative solvers and simulation for the space fractional Ginzburg–Landau equations. Comput. Math. Appl. 78, 1793–1800 (2019)MathSciNetCrossRef
51.
Zurück zum Zitat Zhang, Q., Ren, Y., Lin, X., Xu, Y.: Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations. Appl. Math. Comput. 358, 91–110 (2019)MathSciNetMATH Zhang, Q., Ren, Y., Lin, X., Xu, Y.: Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations. Appl. Math. Comput. 358, 91–110 (2019)MathSciNetMATH
52.
Zurück zum Zitat Zhang, Q., Pan, K., Lin, X., Ren, Y.: Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation (revised) Zhang, Q., Pan, K., Lin, X., Ren, Y.: Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation (revised)
53.
Zurück zum Zitat Zhang, Q., Zhang, L., Sun, H.: A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations (submitted) Zhang, Q., Zhang, L., Sun, H.: A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations (submitted)
54.
Zurück zum Zitat Zhao, X., Sun, Z., Hao, Z.: Fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATHCrossRef Zhao, X., Sun, Z., Hao, Z.: Fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATHCrossRef
Metadaten
Titel
Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations
verfasst von
Lu Zhang
Qifeng Zhang
Hai-Wei Sun
Publikationsdatum
01.06.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01240-x

Weitere Artikel der Ausgabe 3/2020

Journal of Scientific Computing 3/2020 Zur Ausgabe

Premium Partner