Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 2/2020

01.04.2020 | SPECIAL ISSUE

Extraction of Vascular Structure in 3D Cardiac CT Images by Using Object/Background Normalization

verfasst von: S. Ye, D. Hancharou, H. Chen, A. Nedzvedz, H. Lv, S. Ablameyko

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The vessel structures of the blood circulatory system are one of the most complex structures of the human body. Modern computed tomography techniques allow acquiring high resolution images, but at the same time, the number of artifacts in output images is quite high. They may affect diagnostic result and may obscure or simulate pathology. The idea of our method is to represent a 3D computed tomography image as a combination of vascular structure and background that has normal distribution in some neighborhood. Locally adaptive non-linear filters decrease global difference between bright and dark voxels, even if it produces better local contrast. Luminosity and contrast are observed from image background and are used for normalization of the whole image. After making background normalization at each layer, we merge layers and reconstruct vessels structure. The proposed method has been tested on real cardiac CT images, the test results show that high quality 3D structures are reconstructed, without requiring a priori knowledge or user interaction. The tested dataset has been made publicly available. The proposed approach can be applied to denoising computed tomography images, enhancing of contrast in lesion areas without changing topology of initial vessel structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat The National Statistical Committee of the Republic of Belarus, “Demographic Yearbook of the Republic of Belarus,” 323 p. (2003). The National Statistical Committee of the Republic of Belarus, “Demographic Yearbook of the Republic of Belarus,” 323 p. (2003).
2.
Zurück zum Zitat World Health Organization, “The top 10 causes of death.” http://www.who.int/mediacentre/factsheets/fs310/en/ World Health Organization, “The top 10 causes of death.” http://​www.​who.​int/​mediacentre/​factsheets/​fs310/​en/​
3.
Zurück zum Zitat F. E. Boas and D. Fleischmann, “CT artifacts: Causes and reduction techniques,” Imaging Med. 4 (2), 229–240 (2012).CrossRef F. E. Boas and D. Fleischmann, “CT artifacts: Causes and reduction techniques,” Imaging Med. 4 (2), 229–240 (2012).CrossRef
4.
Zurück zum Zitat C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv. 36 (2), 81–121 (2004).CrossRef C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv. 36 (2), 81–121 (2004).CrossRef
5.
Zurück zum Zitat D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes,” Med. Image Anal. 13 (6), 819–845 (2009).CrossRef D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes,” Med. Image Anal. 13 (6), 819–845 (2009).CrossRef
6.
Zurück zum Zitat E. Bullitt and S. R. Aylward, “Analysis of time-varying images using 3d vascular models,” in Proc. 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery (Washington, DC, USA, 2001), IEEE, pp. 9–14. E. Bullitt and S. R. Aylward, “Analysis of time-varying images using 3d vascular models,” in Proc. 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery (Washington, DC, USA, 2001), IEEE, pp. 9–14.
7.
Zurück zum Zitat A. M. Yatchenko, A. S. Krylov, A. V. Gavrilov, and I. V. Arkhipov, “3D liver vessels model design using CT data,” in Proc. 19th Int. Conf. on Computer Graphics and Vision (GraphiCon’2009) (Moscow, Russia, 2009), pp. 344−347 [in Russian]. A. M. Yatchenko, A. S. Krylov, A. V. Gavrilov, and I. V. Arkhipov, “3D liver vessels model design using CT data,” in Proc. 19th Int. Conf. on Computer Graphics and Vision (GraphiCon2009) (Moscow, Russia, 2009), pp. 344−347 [in Russian].
9.
Zurück zum Zitat J. F. Carrillo, M. Orkisz, and M. Hernández Hoyos, “Extraction of 3D vascular tree skeletons based on the analysis of connected components evolution,” in Computer Analysis of Images and Patterns, Proc. 11th Int. Conf. CAIP 2005 (Versailles, France, 2005), Ed. by A. Gagalowicz and W. Philips, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2005), Vol. 3691, pp. 604–611. J. F. Carrillo, M. Orkisz, and M. Hernández Hoyos, “Extraction of 3D vascular tree skeletons based on the analysis of connected components evolution,” in Computer Analysis of Images and Patterns, Proc. 11th Int. Conf. CAIP 2005 (Versailles, France, 2005), Ed. by A. Gagalowicz and W. Philips, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2005), Vol. 3691, pp. 604–611.
10.
Zurück zum Zitat G. Yang, P. Kitslaar, M. Frenay, et al., “Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography,” Int. J. Cardiovasc. Imaging 28 (4), 921–933 (2012).CrossRef G. Yang, P. Kitslaar, M. Frenay, et al., “Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography,” Int. J. Cardiovasc. Imaging 28 (4), 921–933 (2012).CrossRef
11.
Zurück zum Zitat R. Bates, B. Irving, B. Markelc, et al., “Extracting 3D vascular structures from microscopy images using Convolutional Recurrent Networks,” arXiv preprint arXiv:1705.09597 (2017). https://arxiv.org/abs/1705.09597 R. Bates, B. Irving, B. Markelc, et al., “Extracting 3D vascular structures from microscopy images using Convolutional Recurrent Networks,” arXiv preprint arXiv:1705.09597 (2017). https://​arxiv.​org/​abs/​1705.​09597
12.
Zurück zum Zitat H. S. Bhadauria, S. S. Bisht, and A. Singh, “Vessels extraction from retinal images,” IOSR J. Electron. Commun. Eng. 6 (3), 79–82 (2013).CrossRef H. S. Bhadauria, S. S. Bisht, and A. Singh, “Vessels extraction from retinal images,” IOSR J. Electron. Commun. Eng. 6 (3), 79–82 (2013).CrossRef
13.
Zurück zum Zitat Q. Li, S. Sone, and K. Doi, “Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans,” Med. Phys. 30 (8), 2040–2051 (2003).CrossRef Q. Li, S. Sone, and K. Doi, “Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans,” Med. Phys. 30 (8), 2040–2051 (2003).CrossRef
14.
Zurück zum Zitat C. T. Metz, M. Schaap, A. C. Weustink, et al., “Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach,” Med. Phys. 36 (12), 5568–5579 (2009).CrossRef C. T. Metz, M. Schaap, A. C. Weustink, et al., “Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach,” Med. Phys. 36 (12), 5568–5579 (2009).CrossRef
15.
Zurück zum Zitat D. Hancharou, A. Nedzved, and S. Ablameyko, “3D Distance transform and its application for processing of medical images,” J. Inf., Control Manage. Syst. 8 (2), 43–53 (2010). D. Hancharou, A. Nedzved, and S. Ablameyko, “3D Distance transform and its application for processing of medical images,” J. Inf., Control Manage. Syst. 8 (2), 43–53 (2010).
16.
Zurück zum Zitat D. Hancharou, A. Nedzved, and S. Ablameyko, “Skeletonization algorithm of high resolution vascular data,” in Pattern Recognition and Information Processing (PRIP’2014), Proc. 12th Int. Conf. (Minsk, Belarus, 2014), pp. 76–80. D. Hancharou, A. Nedzved, and S. Ablameyko, “Skeletonization algorithm of high resolution vascular data,” in Pattern Recognition and Information Processing (PRIP2014), Proc. 12th Int. Conf. (Minsk, Belarus, 2014), pp. 76–80.
Metadaten
Titel
Extraction of Vascular Structure in 3D Cardiac CT Images by Using Object/Background Normalization
verfasst von
S. Ye
D. Hancharou
H. Chen
A. Nedzvedz
H. Lv
S. Ablameyko
Publikationsdatum
01.04.2020
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 2/2020
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661820020170

Weitere Artikel der Ausgabe 2/2020

Pattern Recognition and Image Analysis 2/2020 Zur Ausgabe

Premium Partner