Skip to main content
Erschienen in: Journal of Materials Science 7/2018

28.12.2017 | Composites

Fabrication and characterization of cellulose nanofibrils/epoxy nanocomposite foam

verfasst von: Jinghao Li, Liqing Wei, Weiqi Leng, John F. Hunt, Zhiyong Cai

Erschienen in: Journal of Materials Science | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plant-derived cellulose nanofibrils (CNFs) have shown reinforcing effects in polymer nanocomposites. However, freeze-dried CNFs are foam-like material, namely aerogel, that are challenging to disperse in a polymer matrix. In this work, a liquid infusion process was developed for a CNF/epoxy nanocomposite cross-linked foam structure with alterable properties without damaging the foam structure. Microstructures of CNF/epoxy composite foams with different formulations were evaluated using a scanning electron microscope. Surface morphology showed that the CNF cross-linked fibers were well attached by epoxy resin. All absolute and specific mechanical properties [by normalizing the measured parameters against the measured density (ρ)] were investigated. Water resistance and thermal stability of CNF/epoxy composite foams were investigated by water absorption test and thermogravimetric analysis. The concentration of epoxy solution in both tetrahydrofuran (THF) solvents and ethyl acetate (EA) solvents was shown to improve compressive properties and water resistance. The samples fabricated with higher epoxy concentration had higher compressive properties, better water resistance, and better thermal stability. The CNF/epoxy composite foams exhibited compressive modulus and compressive strength up to 175 and 10 MPa, respectively. The water diffusion coefficient of CNF/epoxy composite foams was reduced with an increase in epoxy loading. Further, the CNF/epoxy nanocomposite foams fabricated by the epoxy/THF solution had a more uniform structure and better strength performance than foams fabricated by the epoxy/EA solution, due to the increased solubility of the epoxy in THF compared to epoxy in EA. The glass transition temperature (Tg) was determined by differential scanning calorimetry. The Tg of the nanocomposites was influenced by the CNF/epoxy composition. Therefore, the properties of CNF/epoxy nanocomposite foams can be optimized via changing the solvent and concentration of epoxy resin in solvent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86:1781–1789CrossRef Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86:1781–1789CrossRef
2.
Zurück zum Zitat Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J et al (2016) All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain Chem Eng 4:4417–4423CrossRef Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J et al (2016) All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain Chem Eng 4:4417–4423CrossRef
4.
Zurück zum Zitat Lee S-Y, Chun S-J, Kang I-A, Park J-Y (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55CrossRef Lee S-Y, Chun S-J, Kang I-A, Park J-Y (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55CrossRef
5.
Zurück zum Zitat Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef
6.
Zurück zum Zitat Jeronimidis G (1980) Wood, one of nature’s challenging composites. Symp Soc Exp Biol 34:169–182 Jeronimidis G (1980) Wood, one of nature’s challenging composites. Symp Soc Exp Biol 34:169–182
7.
Zurück zum Zitat Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef
8.
Zurück zum Zitat Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108CrossRef Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108CrossRef
9.
Zurück zum Zitat Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef
10.
Zurück zum Zitat Yao C, Hernandez A, Yu Y, Cai Z, Wang X (2016) Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30:103–108CrossRef Yao C, Hernandez A, Yu Y, Cai Z, Wang X (2016) Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30:103–108CrossRef
11.
Zurück zum Zitat Chen B, Zheng Q, Zhu J, Li J, Cai Z, Chen L et al (2016) Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv 6:96518–96526CrossRef Chen B, Zheng Q, Zhu J, Li J, Cai Z, Chen L et al (2016) Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv 6:96518–96526CrossRef
12.
Zurück zum Zitat Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW et al (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRef Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW et al (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRef
13.
Zurück zum Zitat Zheng Q, Javadi A, Sabo R, Cai Z, Gong S (2013) Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3:20816–20823CrossRef Zheng Q, Javadi A, Sabo R, Cai Z, Gong S (2013) Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3:20816–20823CrossRef
14.
Zurück zum Zitat Yao C, Wang F, Cai Z, Wang X (2016) Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. RSC Adv 6:92648–92654CrossRef Yao C, Wang F, Cai Z, Wang X (2016) Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. RSC Adv 6:92648–92654CrossRef
15.
Zurück zum Zitat Lee Y, Choi J-W, Suh DJ, Ha J-M, Lee C-H (2015) Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Appl Catal A 506:288–293CrossRef Lee Y, Choi J-W, Suh DJ, Ha J-M, Lee C-H (2015) Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Appl Catal A 506:288–293CrossRef
16.
Zurück zum Zitat Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustainability 6:5839–5852CrossRef Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustainability 6:5839–5852CrossRef
17.
Zurück zum Zitat Li Z, Yao C, Wang F, Cai Z, Wang X (2014) Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology 25:504005CrossRef Li Z, Yao C, Wang F, Cai Z, Wang X (2014) Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology 25:504005CrossRef
18.
Zurück zum Zitat Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271CrossRef Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271CrossRef
19.
Zurück zum Zitat Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118CrossRef Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118CrossRef
20.
Zurück zum Zitat Hodgkin JH, Simon GP, Varley RJ (1998) Thermoplastic toughening of epoxy resins: a critical review. Polym Adv Technol 9:3–10CrossRef Hodgkin JH, Simon GP, Varley RJ (1998) Thermoplastic toughening of epoxy resins: a critical review. Polym Adv Technol 9:3–10CrossRef
21.
Zurück zum Zitat Li J, Hunt JF, Cai Z, Zhou X (2013) Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric. Compos Part B Eng 53:17–24CrossRef Li J, Hunt JF, Cai Z, Zhou X (2013) Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric. Compos Part B Eng 53:17–24CrossRef
22.
Zurück zum Zitat Li J, Hunt JF, Gong S, Cai Z (2016) Simplified analytical model and balanced design approach for light-weight wood-based structural panel in bending. Compos Struct 136:16–24CrossRef Li J, Hunt JF, Gong S, Cai Z (2016) Simplified analytical model and balanced design approach for light-weight wood-based structural panel in bending. Compos Struct 136:16–24CrossRef
23.
Zurück zum Zitat Li J, Hunt JF, Gong S, Cai Z (2016) Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP). Holzforschung 70:567–575 Li J, Hunt JF, Gong S, Cai Z (2016) Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP). Holzforschung 70:567–575
24.
Zurück zum Zitat Li J, Hunt JF, Gong S, Cai Z (2015) Testing and evaluation of a slot and tab construction technique for light-weight wood-fiber-based structural panels under bending. J Test Eval 44:357–366 Li J, Hunt JF, Gong S, Cai Z (2015) Testing and evaluation of a slot and tab construction technique for light-weight wood-fiber-based structural panels under bending. J Test Eval 44:357–366
25.
Zurück zum Zitat Li J, Hunt JF, Gong S, Cai Z (2014) High strength wood-based sandwich panels reinforced with fiberglass and foam. BioResources 9:1898–1913 Li J, Hunt JF, Gong S, Cai Z (2014) High strength wood-based sandwich panels reinforced with fiberglass and foam. BioResources 9:1898–1913
26.
Zurück zum Zitat Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L et al (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L et al (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef
27.
Zurück zum Zitat Qing Y, Sabo R, Zhu J, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234CrossRef Qing Y, Sabo R, Zhu J, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234CrossRef
28.
Zurück zum Zitat Standard A (2010) D695, 2010 standard test method for compressive properties of rigid plastics. ASTM International, West Conshohocken Standard A (2010) D695, 2010 standard test method for compressive properties of rigid plastics. ASTM International, West Conshohocken
29.
Zurück zum Zitat Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 69:91–103CrossRef Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 69:91–103CrossRef
30.
Zurück zum Zitat Standard A (1998) D570-98: standard test method for water absorption of plastics. American Society for Testing and Materials, New York Standard A (1998) D570-98: standard test method for water absorption of plastics. American Society for Testing and Materials, New York
31.
Zurück zum Zitat Wei L, McDonald AG, Freitag C, Morrell JJ (2013) Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym Degrad Stab 98:1348–1361CrossRef Wei L, McDonald AG, Freitag C, Morrell JJ (2013) Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym Degrad Stab 98:1348–1361CrossRef
32.
Zurück zum Zitat Mueller S, Sapkota J, Nicharat A, Zimmermann T, Tingaut P, Weder C et al (2015) Influence of the nanofiber dimensions on the properties of nanocellulose/poly (vinyl alcohol) aerogels. J Appl Polym Sci 132:13CrossRef Mueller S, Sapkota J, Nicharat A, Zimmermann T, Tingaut P, Weder C et al (2015) Influence of the nanofiber dimensions on the properties of nanocellulose/poly (vinyl alcohol) aerogels. J Appl Polym Sci 132:13CrossRef
33.
Zurück zum Zitat Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8 Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8
34.
Zurück zum Zitat Soni B, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589CrossRef Soni B, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589CrossRef
35.
Zurück zum Zitat Xu X, Liu F, Jiang L, Zhu J, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef Xu X, Liu F, Jiang L, Zhu J, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef
36.
Zurück zum Zitat Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A Appl Sci Manuf 64:79–89CrossRef Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A Appl Sci Manuf 64:79–89CrossRef
Metadaten
Titel
Fabrication and characterization of cellulose nanofibrils/epoxy nanocomposite foam
verfasst von
Jinghao Li
Liqing Wei
Weiqi Leng
John F. Hunt
Zhiyong Cai
Publikationsdatum
28.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1652-y

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.