Skip to main content
Erschienen in: Journal of Materials Science 7/2018

26.12.2017 | Chemical routes to materials

IrO x /CN x NTs as electrocatalysts for oxygen evolution reaction in a HCO3 /CO2 system at neutral pH

verfasst von: Weixin Lv, Suxian Liu, Rui Zhang, Wenjuan Wang, Zhongxia Wang, Lei Wang, Wei Wang

Erschienen in: Journal of Materials Science | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the process of electrochemical reduction of CO2 in aqueous solution, the cathode mainly undergoes the CO2 reduction reaction, and the anode undergoes the oxygen evolution reaction (OER). Developing an efficient OER catalyst is very important for improving the energy efficiency of electrochemical reduction of CO2; however, only few reports are concerned with this problem for now. Herein, N-doped multiwalled carbon nanotubes surface modified IrO x nanoparticles (IrO x /CN x NTs) as a highly active catalyst for OER at neutral pH was prepared by solvothermal method. The obtained lowest overpotentials for OER in a HCO3 /CO2 system at neutral pH are 171 and 472 mV at the current densities of 1 and 10 mA cm−2 separately, which are better than the most catalysts those were reported for neutral media. No obvious current density decay was observed after 12-h electrolysis testing. The energy efficiency is a key factor which can reflect the real energy input for CO2 conversion. By using IrO x /CN x NTs as the anode catalyst, the energy efficiency for electrochemical reduction of CO2 to formate on Sn cathode can achieve 44.7%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675CrossRef Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675CrossRef
2.
Zurück zum Zitat Lv WX, Bei JJ, Zhang R, Wang WJ, Kong FY, Wang L, Wang W (2017) Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS Omega 2:2561–2567CrossRef Lv WX, Bei JJ, Zhang R, Wang WJ, Kong FY, Wang L, Wang W (2017) Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS Omega 2:2561–2567CrossRef
3.
Zurück zum Zitat Gao S, Sun Z, Liu W et al (2017) Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun 8:14503CrossRef Gao S, Sun Z, Liu W et al (2017) Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun 8:14503CrossRef
4.
Zurück zum Zitat Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1:3451–3458CrossRef Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1:3451–3458CrossRef
5.
Zurück zum Zitat Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid State Lett 13:B109–B111CrossRef Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid State Lett 13:B109–B111CrossRef
6.
Zurück zum Zitat Zhao C, Wang J, Goodenough JB (2016) Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. Electrochem Commun 65:9–13CrossRef Zhao C, Wang J, Goodenough JB (2016) Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. Electrochem Commun 65:9–13CrossRef
7.
Zurück zum Zitat Zhang B, Zheng X, Voznyy O et al (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352:333–337CrossRef Zhang B, Zheng X, Voznyy O et al (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352:333–337CrossRef
8.
Zurück zum Zitat Seitz LC, Dickens CF, Nishio K et al (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353:1011–1014CrossRef Seitz LC, Dickens CF, Nishio K et al (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353:1011–1014CrossRef
9.
Zurück zum Zitat Wei S, Qi K, Jin Z, Cao J, Zheng W, Chen H, Cui X (2016) One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting. ACS Omega 1:1367–1373CrossRef Wei S, Qi K, Jin Z, Cao J, Zheng W, Chen H, Cui X (2016) One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting. ACS Omega 1:1367–1373CrossRef
10.
Zurück zum Zitat Sun W, Song Y, Gong XQ, Cao LM, Yang J (2016) Hollandite structure Kx≈0.25IrO2 catalyst with highly efficient oxygen evolution reaction. ACS Appl Mater Interfaces 8:820–826CrossRef Sun W, Song Y, Gong XQ, Cao LM, Yang J (2016) Hollandite structure Kx≈0.25IrO2 catalyst with highly efficient oxygen evolution reaction. ACS Appl Mater Interfaces 8:820–826CrossRef
11.
Zurück zum Zitat Danilovic N, Subbaraman R, Chang KC et al (2014) Using surface segregation to design stable Ru–Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 53:14016–14021CrossRef Danilovic N, Subbaraman R, Chang KC et al (2014) Using surface segregation to design stable Ru–Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 53:14016–14021CrossRef
12.
Zurück zum Zitat Audichon T, Morisset S, Napporn TW, Kokoh KB, Comminges C, Morais C (2015) Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. Chemelectrochem 2:1128–1137CrossRef Audichon T, Morisset S, Napporn TW, Kokoh KB, Comminges C, Morais C (2015) Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. Chemelectrochem 2:1128–1137CrossRef
14.
Zurück zum Zitat Yang J, Tian CG, Wang L, Fu HG (2011) An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J Mater Chem 21:3384–3390CrossRef Yang J, Tian CG, Wang L, Fu HG (2011) An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J Mater Chem 21:3384–3390CrossRef
15.
Zurück zum Zitat Gao D, Zhou H, Wang J et al (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137:4288–4291CrossRef Gao D, Zhou H, Wang J et al (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137:4288–4291CrossRef
16.
Zurück zum Zitat Zhang R, Li L, Chen L, Zhang G, Shi KY (2011) N-doped carbon nanotubes synthesized in high yield and decorated with CeO2 and SnO2 nanoparticles. J Alloys Compd 509:8620–8624CrossRef Zhang R, Li L, Chen L, Zhang G, Shi KY (2011) N-doped carbon nanotubes synthesized in high yield and decorated with CeO2 and SnO2 nanoparticles. J Alloys Compd 509:8620–8624CrossRef
17.
Zurück zum Zitat Yue B, Ma Y, Tao H et al (2008) CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem 18:1747–1750CrossRef Yue B, Ma Y, Tao H et al (2008) CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem 18:1747–1750CrossRef
19.
Zurück zum Zitat Gao S, Lin Y, Jiao X et al (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529:68–71CrossRef Gao S, Lin Y, Jiao X et al (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529:68–71CrossRef
20.
Zurück zum Zitat Zhang R, Lv WX, Li GH, Lei LX (2015) Electrochemical reduction of CO2 on SnO2/nitrogen-doped multiwalled carbon nanotubes composites in KHCO3 aqueous solution. Mater Lett 141:63–66CrossRef Zhang R, Lv WX, Li GH, Lei LX (2015) Electrochemical reduction of CO2 on SnO2/nitrogen-doped multiwalled carbon nanotubes composites in KHCO3 aqueous solution. Mater Lett 141:63–66CrossRef
21.
Zurück zum Zitat John AR, Arumugam P (2015) Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode. J Power Sources 277:387–392CrossRef John AR, Arumugam P (2015) Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode. J Power Sources 277:387–392CrossRef
22.
Zurück zum Zitat Fan YZ, Cheng X (2016) Porous IrO2–Ta2O5 coating modified with carbon nanotubes for oxygen evolution reaction. J Electrochem Soc 163:E209–E215CrossRef Fan YZ, Cheng X (2016) Porous IrO2–Ta2O5 coating modified with carbon nanotubes for oxygen evolution reaction. J Electrochem Soc 163:E209–E215CrossRef
23.
Zurück zum Zitat Shan R, Zhang ZC, Kan M, Zhang TY, Zan Q, Zhao YX (2015) A novel highly active nanostructured IrO2/Ti anode for water oxidation. Int J Hydrogen Energy 40:14279–14283CrossRef Shan R, Zhang ZC, Kan M, Zhang TY, Zan Q, Zhao YX (2015) A novel highly active nanostructured IrO2/Ti anode for water oxidation. Int J Hydrogen Energy 40:14279–14283CrossRef
24.
Zurück zum Zitat Yang X, Li H, Lu A-Y et al (2016) Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 25:42–50CrossRef Yang X, Li H, Lu A-Y et al (2016) Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 25:42–50CrossRef
25.
Zurück zum Zitat Zhang Y, Zhang HJ, Yang J, Bai YJ, Qiu HJ, Wang Y (2016) Unique sandwiched carbon sheets@Ni–Mn nanoparticles for enhanced oxygen evolution reaction. ACS Appl Mater Interfaces 8:11396–11402CrossRef Zhang Y, Zhang HJ, Yang J, Bai YJ, Qiu HJ, Wang Y (2016) Unique sandwiched carbon sheets@Ni–Mn nanoparticles for enhanced oxygen evolution reaction. ACS Appl Mater Interfaces 8:11396–11402CrossRef
26.
Zurück zum Zitat Joya KS, Joya YF, de Groot HJM (2014) Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3 −/CO2 system at near-neutral pH. Adv Energy Mater 4:1301929CrossRef Joya KS, Joya YF, de Groot HJM (2014) Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3 /CO2 system at near-neutral pH. Adv Energy Mater 4:1301929CrossRef
27.
Zurück zum Zitat Nie ZP, Ma DK, Fang GY, Chen W, Huang SM (2016) Concave Bi2WO6 nanoplates with oxygen vacancies achieving enhanced electrocatalytic oxygen evolution in near-neutral water. J Mater Chem A 4:2438–2444CrossRef Nie ZP, Ma DK, Fang GY, Chen W, Huang SM (2016) Concave Bi2WO6 nanoplates with oxygen vacancies achieving enhanced electrocatalytic oxygen evolution in near-neutral water. J Mater Chem A 4:2438–2444CrossRef
28.
Zurück zum Zitat Ramsundar RM, Debgupta J, Pillai VK, Joy PA (2015) Co3O4 nanorods-efficient non-noble metal electrocatalyst for oxygen evolution at neutral pH. Electrocatalysis 6:331–340CrossRef Ramsundar RM, Debgupta J, Pillai VK, Joy PA (2015) Co3O4 nanorods-efficient non-noble metal electrocatalyst for oxygen evolution at neutral pH. Electrocatalysis 6:331–340CrossRef
29.
Zurück zum Zitat Vasileff A, Chen S, Qiao SZ (2016) Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horiz 1:41–44CrossRef Vasileff A, Chen S, Qiao SZ (2016) Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horiz 1:41–44CrossRef
30.
Zurück zum Zitat Liu Y, Xiao C, Lyu M et al (2015) Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew Chem Int Ed 54:11231–11235CrossRef Liu Y, Xiao C, Lyu M et al (2015) Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew Chem Int Ed 54:11231–11235CrossRef
31.
Zurück zum Zitat Cui L, Liu D, Hao S et al (2017) In situ electrochemical surface derivation of cobalt phosphate from a Co(CO3)0.5(OH)·0.11H2O nanoarray for efficient water oxidation in neutral aqueous solution. Nanoscale 9:3752–3756CrossRef Cui L, Liu D, Hao S et al (2017) In situ electrochemical surface derivation of cobalt phosphate from a Co(CO3)0.5(OH)·0.11H2O nanoarray for efficient water oxidation in neutral aqueous solution. Nanoscale 9:3752–3756CrossRef
32.
Zurück zum Zitat Ahn HS, Tilley TD (2013) Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 anode. Adv Funct Mater 23:227–233CrossRef Ahn HS, Tilley TD (2013) Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 anode. Adv Funct Mater 23:227–233CrossRef
33.
Zurück zum Zitat Wu J, Xue Y, Yan X, Yan W, Cheng Q, Xie Y (2012) Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5:521–530CrossRef Wu J, Xue Y, Yan X, Yan W, Cheng Q, Xie Y (2012) Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5:521–530CrossRef
34.
Zurück zum Zitat Lv WX, Zhou J, Kong FY, Fang HL, Wang W (2016) Porous tin-based film deposited on copper foil for electrochemical reduction of carbon dioxide to formate. Int J Hydrogen Energy 41:1585–1591CrossRef Lv WX, Zhou J, Kong FY, Fang HL, Wang W (2016) Porous tin-based film deposited on copper foil for electrochemical reduction of carbon dioxide to formate. Int J Hydrogen Energy 41:1585–1591CrossRef
35.
Zurück zum Zitat Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1737CrossRef Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1737CrossRef
36.
Zurück zum Zitat Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Vayenas CG, White RE, Gamboa-Aldeco ME (eds) Modern aspects of electrochemistry. Springer, New York, pp 89–189CrossRef Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Vayenas CG, White RE, Gamboa-Aldeco ME (eds) Modern aspects of electrochemistry. Springer, New York, pp 89–189CrossRef
37.
Zurück zum Zitat Zhang R, Lv WX, Li GH, Mezaal MA, Lei LX (2015) Electrochemical reduction of carbon dioxide to formate with a Sn cathode and an IrxSnyRuzO2/Ti anode. RSC Adv 5:68662–68667CrossRef Zhang R, Lv WX, Li GH, Mezaal MA, Lei LX (2015) Electrochemical reduction of carbon dioxide to formate with a Sn cathode and an IrxSnyRuzO2/Ti anode. RSC Adv 5:68662–68667CrossRef
Metadaten
Titel
IrO x /CN x NTs as electrocatalysts for oxygen evolution reaction in a HCO3 −/CO2 system at neutral pH
verfasst von
Weixin Lv
Suxian Liu
Rui Zhang
Wenjuan Wang
Zhongxia Wang
Lei Wang
Wei Wang
Publikationsdatum
26.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1955-z

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.