Skip to main content
Erschienen in: Journal of Coatings Technology and Research 4/2022

21.03.2022

Fabrication of multifunctional smart polyester fabric via electrochemical deposition of ZnO nano-/microhierarchical structures

verfasst von: U. G. Mihiri Ekanayake, K. E. D. Y. Taniya Dayananda, Nadeesha Rathuwadu, M. M. M. G. Prasanga G. Mantilaka

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advanced multifunctional surfaces are widely used due to their unique surface properties and widespread applications. Developing a multifunctional fabric with a low cost, fluorine-free, and easily controllable method is a great challenge. This paper reports a multifunctional fabric with conductive, UV blocking, superhydrophobic and photosensing properties via an electrodeposition method. ZnO nano-/microarchitectures have been electrodeposited on polyester fabric with a carbon black screen-printed conductive layer. The deposition was carried out in various operating parameters. The optimized conditions for the ZnO electrodeposition are at − 1.0 V for 30 min deposition time in 5 mM Zn(NO3)2 in 0.1 M KNO3 at room temperature. The developed fabric showed 100% UV radiation blocking and a water contact angle (WCA) of 156° after self-assembly of stearic acid on the ZnO layer. The modified fabric showed fast photoresponse as a photosensor, which indicates that this can be used as flexible wearable photosensors in practical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Pandimurugan, R, Thambidurai, S, “UV Protection and Antibacterial Properties of Seaweed Capped ZnO Nanoparticles Coated Cotton Fabrics.” Int. J. Biol. Macromol., 105 788–795 (2017)CrossRef Pandimurugan, R, Thambidurai, S, “UV Protection and Antibacterial Properties of Seaweed Capped ZnO Nanoparticles Coated Cotton Fabrics.” Int. J. Biol. Macromol., 105 788–795 (2017)CrossRef
2.
Zurück zum Zitat Ekanayake, UGM, Rathuwadu, N, Mantilaka, MMMGPG, Rajapakse, RMG, “Fabrication of ZnO Nanoarchitectured Fluorine-Free Robust Superhydrophobic and UV Shielding Polyester Fabrics for Umbrella Canopies.” RSC Adv., 8 (55) 31406–31413 (2018)CrossRef Ekanayake, UGM, Rathuwadu, N, Mantilaka, MMMGPG, Rajapakse, RMG, “Fabrication of ZnO Nanoarchitectured Fluorine-Free Robust Superhydrophobic and UV Shielding Polyester Fabrics for Umbrella Canopies.” RSC Adv., 8 (55) 31406–31413 (2018)CrossRef
4.
Zurück zum Zitat Zhu, T, Li, S, Huang, J, Mihailiasa, M, Lai, Y, “Rational Design of Multi-layered Superhydrophobic Coating on Cotton Fabrics for UV Shielding, Self-Cleaning and Oil-Water Separation.” Mater. Des., 134 342–351 (2017)CrossRef Zhu, T, Li, S, Huang, J, Mihailiasa, M, Lai, Y, “Rational Design of Multi-layered Superhydrophobic Coating on Cotton Fabrics for UV Shielding, Self-Cleaning and Oil-Water Separation.” Mater. Des., 134 342–351 (2017)CrossRef
5.
Zurück zum Zitat Pahalagedara, LR, Siriwardane, IW, Tissera, ND, Wijesena, RN, de Silva, KMN, “Carbon Black Functionalized Stretchable Conductive Fabrics for Wearable Heating Applications.” RSC Adv., 7 (31) 19174–19180 (2017)CrossRef Pahalagedara, LR, Siriwardane, IW, Tissera, ND, Wijesena, RN, de Silva, KMN, “Carbon Black Functionalized Stretchable Conductive Fabrics for Wearable Heating Applications.” RSC Adv., 7 (31) 19174–19180 (2017)CrossRef
6.
Zurück zum Zitat Textor, T, Mahltig, B, “A Sol–Gel Based Surface Treatment for Preparation of Water Repellent Antistatic Textiles.” Appl. Surf. Sci., 256 (6) 1668–1674 (2010)CrossRef Textor, T, Mahltig, B, “A Sol–Gel Based Surface Treatment for Preparation of Water Repellent Antistatic Textiles.” Appl. Surf. Sci., 256 (6) 1668–1674 (2010)CrossRef
7.
Zurück zum Zitat Kim, YK, Hwang, S-H, Kim, S, Park, H, Lim, SK, “ZnO Nanostructure Electrodeposited on Flexible Conductive Fabric: A Flexible Photo-Sensor.” Sens. Actuators B Chem., 240 1106–1113 (2017)CrossRef Kim, YK, Hwang, S-H, Kim, S, Park, H, Lim, SK, “ZnO Nanostructure Electrodeposited on Flexible Conductive Fabric: A Flexible Photo-Sensor.” Sens. Actuators B Chem., 240 1106–1113 (2017)CrossRef
8.
Zurück zum Zitat Stoppa, M, Chiolerio, A, “Wearable Electronics and Smart Textiles: A Critical Review.” Sensors (Basel), 14 (7) 11957–11992 (2014)CrossRef Stoppa, M, Chiolerio, A, “Wearable Electronics and Smart Textiles: A Critical Review.” Sensors (Basel), 14 (7) 11957–11992 (2014)CrossRef
9.
Zurück zum Zitat Ahmad, D, van den Boogaert, I, Miller, J, Presswell, R, Jouhara, H, “Hydrophilic and Hydrophobic Materials and Their Applications.” Energy Sources Part A Recovery Util. Environ. Effects, 40 (22) 2686–2725 (2018) Ahmad, D, van den Boogaert, I, Miller, J, Presswell, R, Jouhara, H, “Hydrophilic and Hydrophobic Materials and Their Applications.” Energy Sources Part A Recovery Util. Environ. Effects, 40 (22) 2686–2725 (2018)
10.
Zurück zum Zitat Ashraf, M, Campagne, C, Perwuelz, A, Champagne, P, Leriche, A, Courtois, C, “Development of Superhydrophilic and Superhydrophobic Polyester Fabric by Growing Zinc Oxide Nanorods.” J. Colloid Interface Sci., 394 545–553 (2013)CrossRef Ashraf, M, Campagne, C, Perwuelz, A, Champagne, P, Leriche, A, Courtois, C, “Development of Superhydrophilic and Superhydrophobic Polyester Fabric by Growing Zinc Oxide Nanorods.” J. Colloid Interface Sci., 394 545–553 (2013)CrossRef
11.
Zurück zum Zitat Richard, E, Lakshmi, RV, Aruna, ST, Basu, BJ, “A Simple Cost-Effective and Eco-friendly Wet Chemical Process for the Fabrication of Superhydrophobic Cotton Fabrics.” Appl. Surf. Sci., 277 302–309 (2013)CrossRef Richard, E, Lakshmi, RV, Aruna, ST, Basu, BJ, “A Simple Cost-Effective and Eco-friendly Wet Chemical Process for the Fabrication of Superhydrophobic Cotton Fabrics.” Appl. Surf. Sci., 277 302–309 (2013)CrossRef
12.
Zurück zum Zitat Preda, N, Enculescu, M, Zgura, I, Socol, M, Matei, E, Vasilache, V, Enculescu, I, “Superhydrophobic Properties of Cotton Fabrics Functionalized with ZnO by Electroless Deposition.” Mater. Chem. Phys., 138 (1) 253–261 (2013)CrossRef Preda, N, Enculescu, M, Zgura, I, Socol, M, Matei, E, Vasilache, V, Enculescu, I, “Superhydrophobic Properties of Cotton Fabrics Functionalized with ZnO by Electroless Deposition.” Mater. Chem. Phys., 138 (1) 253–261 (2013)CrossRef
13.
Zurück zum Zitat Velayi, E, Norouzbeigi, R, “Synthesis of Hierarchical Superhydrophobic Zinc Oxide Nano-structures for Oil/Water Separation.” Ceram. Int., 44 (12) 14202–14208 (2018)CrossRef Velayi, E, Norouzbeigi, R, “Synthesis of Hierarchical Superhydrophobic Zinc Oxide Nano-structures for Oil/Water Separation.” Ceram. Int., 44 (12) 14202–14208 (2018)CrossRef
14.
Zurück zum Zitat Xu, B, Cai, Z, “Fabrication of a Superhydrophobic ZnO Nanorod Array Film on Cotton Fabrics via a Wet Chemical Route and Hydrophobic Modification.” Appl. Surf. Sci., 254 (18) 5899–5904 (2008)CrossRef Xu, B, Cai, Z, “Fabrication of a Superhydrophobic ZnO Nanorod Array Film on Cotton Fabrics via a Wet Chemical Route and Hydrophobic Modification.” Appl. Surf. Sci., 254 (18) 5899–5904 (2008)CrossRef
15.
Zurück zum Zitat Yu, D, Kang, G, Tian, W, Lin, L, Wang, W, “Preparation of Conductive Silk Fabric with Antibacterial Properties by Electroless Silver Plating.” Appl. Surf. Sci., 357 1157–1162 (2015)CrossRef Yu, D, Kang, G, Tian, W, Lin, L, Wang, W, “Preparation of Conductive Silk Fabric with Antibacterial Properties by Electroless Silver Plating.” Appl. Surf. Sci., 357 1157–1162 (2015)CrossRef
16.
Zurück zum Zitat Xue, C-H, Chen, J, Yin, W, Jia, S-T, Ma, J-Z, “Superhydrophobic Conductive Textiles with Antibacterial Property by Coating Fibers with Silver Nanoparticles.” Appl. Surf. Sci., 258 (7) 2468–2472 (2012)CrossRef Xue, C-H, Chen, J, Yin, W, Jia, S-T, Ma, J-Z, “Superhydrophobic Conductive Textiles with Antibacterial Property by Coating Fibers with Silver Nanoparticles.” Appl. Surf. Sci., 258 (7) 2468–2472 (2012)CrossRef
17.
Zurück zum Zitat El Nahhal, IM, Elmanama, AA, Amara, NM, in “Synthesis of Nanometal Oxide–Coated Cotton Composites.” Cotton Research, Chapter 13 (2016), pp 279–294 El Nahhal, IM, Elmanama, AA, Amara, NM, in “Synthesis of Nanometal Oxide–Coated Cotton Composites.” Cotton Research, Chapter 13 (2016), pp 279–294
18.
Zurück zum Zitat Gomes, EC, Oliveira, MAS, “Chemical Polymerization of Aniline in Hydrochloric Acid (HCl) and Formic Acid (HCOOH) Media. Differences Between the Two Synthesized Polyanilines.” Am. J. Polym. Sci., 2 (2) 5–13 (2012)CrossRef Gomes, EC, Oliveira, MAS, “Chemical Polymerization of Aniline in Hydrochloric Acid (HCl) and Formic Acid (HCOOH) Media. Differences Between the Two Synthesized Polyanilines.” Am. J. Polym. Sci., 2 (2) 5–13 (2012)CrossRef
19.
Zurück zum Zitat Hensel, R, Neinhuis, C, Werner, C, “The Springtail Cuticle as a Blueprint for Omniphobic Surfaces.” Chem. Soc. Rev., 45 (2) 323–341 (2016)CrossRef Hensel, R, Neinhuis, C, Werner, C, “The Springtail Cuticle as a Blueprint for Omniphobic Surfaces.” Chem. Soc. Rev., 45 (2) 323–341 (2016)CrossRef
20.
Zurück zum Zitat Kumar, M, Sasikumar, C, “Electrodeposition of Nanostructured ZnO Thin Film: A Review.” Am. J. Mater. Sci. Eng., 2 (2) 18–23 (2014) Kumar, M, Sasikumar, C, “Electrodeposition of Nanostructured ZnO Thin Film: A Review.” Am. J. Mater. Sci. Eng., 2 (2) 18–23 (2014)
21.
Zurück zum Zitat Fortunato, M, Chandraiahgari, CR, De Bellis, G, Ballirano, P, Soltani, P, Kaciulis, S, Caneve, L, Sarto F, Sarto, MS, “Piezoelectric Thin Films of ZnO-Nanorods/Nanowalls Grown by Chemical Bath Deposition.” IEEE Trans. Nanotechnol., 17(2) 311–317 (2018) Fortunato, M, Chandraiahgari, CR, De Bellis, G, Ballirano, P, Soltani, P, Kaciulis, S, Caneve, L, Sarto F, Sarto, MS, “Piezoelectric Thin Films of ZnO-Nanorods/Nanowalls Grown by Chemical Bath Deposition.” IEEE Trans. Nanotechnol., 17(2) 311–317 (2018)
22.
Zurück zum Zitat Oliveira, FF, Proenca, MP, Araújo, JP, Ventura, J, “Electrodeposition of ZnO Thin Films on Conducting Flexible Substrates.” J. Mater. Sci., 51 (12) 5589–5597 (2016)CrossRef Oliveira, FF, Proenca, MP, Araújo, JP, Ventura, J, “Electrodeposition of ZnO Thin Films on Conducting Flexible Substrates.” J. Mater. Sci., 51 (12) 5589–5597 (2016)CrossRef
23.
Zurück zum Zitat Zhang, M, Jin, J, Ogale, A, “Carbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors.” Fibers, 3 (4) 184–196 (2015)CrossRef Zhang, M, Jin, J, Ogale, A, “Carbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors.” Fibers, 3 (4) 184–196 (2015)CrossRef
24.
Zurück zum Zitat Gashti, MP, Gashti, MP, “Effect of Colloidal Dispersion of Clay on Some Properties of Wool Fiber.” J. Dispers. Sci. Technol., 34 (6) 853–858 (2013)CrossRef Gashti, MP, Gashti, MP, “Effect of Colloidal Dispersion of Clay on Some Properties of Wool Fiber.” J. Dispers. Sci. Technol., 34 (6) 853–858 (2013)CrossRef
25.
Zurück zum Zitat Noralian, Z, Gashti, MP, Moghaddam, MR, Tayyeb, H, Erfanian, I, “Ultrasonically Developed Silver/Iota-Carrageenan/Cotton Bionanocomposite as an Efficient Material for Biomedical Applications.” Int. J. Biol. Macromol., 180 439–457 (2021)CrossRef Noralian, Z, Gashti, MP, Moghaddam, MR, Tayyeb, H, Erfanian, I, “Ultrasonically Developed Silver/Iota-Carrageenan/Cotton Bionanocomposite as an Efficient Material for Biomedical Applications.” Int. J. Biol. Macromol., 180 439–457 (2021)CrossRef
26.
Zurück zum Zitat Alimohammadi, F, Gashti, MP, Mozaffari, A, “Polyvinylpyrrolidone/Carbon Nanotube/Cotton Functional Nanocomposite: Preparation and Characterization of Properties.” Fibers Polym., 19 (9) 1940–1947 (2018)CrossRef Alimohammadi, F, Gashti, MP, Mozaffari, A, “Polyvinylpyrrolidone/Carbon Nanotube/Cotton Functional Nanocomposite: Preparation and Characterization of Properties.” Fibers Polym., 19 (9) 1940–1947 (2018)CrossRef
27.
Zurück zum Zitat Bhattacharya, SS, Chaudhari, S, “Study on Structural, Mechanical and Functional Properties of Polyester Silica Nanocomposite Fabric.” Int. J. Pure Appl. Sci. Technol., 21 (1) 43–52 (2014) Bhattacharya, SS, Chaudhari, S, “Study on Structural, Mechanical and Functional Properties of Polyester Silica Nanocomposite Fabric.” Int. J. Pure Appl. Sci. Technol., 21 (1) 43–52 (2014)
28.
Zurück zum Zitat Gashti, MP, Eslami, S, “A Robust Method for Producing Electromagnetic Shielding Cellulose via Iron Oxide Pillared Clay Coating Under Ultraviolet Irradiation.” Funct. Mater. Lett., 8 (6) 1–4 (2015)CrossRef Gashti, MP, Eslami, S, “A Robust Method for Producing Electromagnetic Shielding Cellulose via Iron Oxide Pillared Clay Coating Under Ultraviolet Irradiation.” Funct. Mater. Lett., 8 (6) 1–4 (2015)CrossRef
29.
Zurück zum Zitat Ko, YH, Kim, MS, Park, W, Yu, JS, “Well-Integrated ZnO Nanorod Arrays on Conductive Textiles by Electrochemical Synthesis and Their Physical Properties.” Nanoscale Res. Lett., 8 (1) 28 (2013)CrossRef Ko, YH, Kim, MS, Park, W, Yu, JS, “Well-Integrated ZnO Nanorod Arrays on Conductive Textiles by Electrochemical Synthesis and Their Physical Properties.” Nanoscale Res. Lett., 8 (1) 28 (2013)CrossRef
30.
Zurück zum Zitat Abu-Thabit, NY, “Thermochemistry of Acrylamide Polymerization: An Illustration of Auto-acceleration and Gel Effect.” World J. Chem. Educ., 5 (3) 94–101 (2017) Abu-Thabit, NY, “Thermochemistry of Acrylamide Polymerization: An Illustration of Auto-acceleration and Gel Effect.” World J. Chem. Educ., 5 (3) 94–101 (2017)
31.
Zurück zum Zitat David, NC, Anavi, D, Milanovich, M, Popowski, Y, Frid, L, Amir, E, “Preparation and Properties of Electro-conductive Fabrics Based on Polypyrrole: Covalent vs. Non-covalent Attachment.” IOP Conf. Ser.: Mater. Sci. Eng., 254 032002 (2017) David, NC, Anavi, D, Milanovich, M, Popowski, Y, Frid, L, Amir, E, “Preparation and Properties of Electro-conductive Fabrics Based on Polypyrrole: Covalent vs. Non-covalent Attachment.” IOP Conf. Ser.: Mater. Sci. Eng., 254 032002 (2017)
32.
Zurück zum Zitat Molina, J, Esteves, MF, Fernández, J, Bonastre, J, Cases, F, “Polyaniline Coated Conducting Fabrics. Chemical and Electrochemical Characterization.” Eur. Polym. J. 47 2003–2015 (2011)CrossRef Molina, J, Esteves, MF, Fernández, J, Bonastre, J, Cases, F, “Polyaniline Coated Conducting Fabrics. Chemical and Electrochemical Characterization.” Eur. Polym. J. 47 2003–2015 (2011)CrossRef
33.
Zurück zum Zitat Shen, W, Dong, Y, Cui, G, Li, B, “Optimized Preparation of Electrically Conductive Cotton Fabric by an Industrialized Exhaustion Dyeing with Reduced Graphene Oxide.” Cellulose, 23 (5) 3291–3300 (2016)CrossRef Shen, W, Dong, Y, Cui, G, Li, B, “Optimized Preparation of Electrically Conductive Cotton Fabric by an Industrialized Exhaustion Dyeing with Reduced Graphene Oxide.” Cellulose, 23 (5) 3291–3300 (2016)CrossRef
34.
Zurück zum Zitat Montazer, M, Nia, ZK, “Conductive Nylon Fabric Through In Situ Synthesis of Nano-silver: Preparation and Characterization.” Mater. Sci. Eng. C Mater. Biol. Appl., 56 341–347 (2015)CrossRef Montazer, M, Nia, ZK, “Conductive Nylon Fabric Through In Situ Synthesis of Nano-silver: Preparation and Characterization.” Mater. Sci. Eng. C Mater. Biol. Appl., 56 341–347 (2015)CrossRef
35.
Zurück zum Zitat Nasirizadeh, N, Dehghani, M, Yazdanshenas, ME, “Preparation of Hydrophobic and Conductive Cotton Fabrics Using Multi-wall Carbon Nanotubes by the Sol–Gel Method.” J. Sol–Gel Sci. Technol., 73 (1) 14–21 (2014)CrossRef Nasirizadeh, N, Dehghani, M, Yazdanshenas, ME, “Preparation of Hydrophobic and Conductive Cotton Fabrics Using Multi-wall Carbon Nanotubes by the Sol–Gel Method.” J. Sol–Gel Sci. Technol., 73 (1) 14–21 (2014)CrossRef
36.
Zurück zum Zitat Dai, SX, Li, YY, Du, ZL, Carter, KR, “Electrochemical Deposition of ZnO Hierarchical Nanostructures from Hydrogel Coated Electrodes.” J. Electrochem. Soc., 160 (4) D156–D162 (2013)CrossRef Dai, SX, Li, YY, Du, ZL, Carter, KR, “Electrochemical Deposition of ZnO Hierarchical Nanostructures from Hydrogel Coated Electrodes.” J. Electrochem. Soc., 160 (4) D156–D162 (2013)CrossRef
37.
Zurück zum Zitat Kelly, JJ, West, AC, “Copper Deposition in the Presence of Polyethylene Glycol: II. Electrochemical Impedance Spectroscopy.” J. Electrochem. Soc., 145 (10) 3477 (1998)CrossRef Kelly, JJ, West, AC, “Copper Deposition in the Presence of Polyethylene Glycol: II. Electrochemical Impedance Spectroscopy.” J. Electrochem. Soc., 145 (10) 3477 (1998)CrossRef
38.
Zurück zum Zitat Izaki, M, Omi, T, “Transparent Zinc Oxide Films Prepared by Electrochemical Reaction.” Appl. Phys. Lett., 68 (17) 2439–2440 (1996)CrossRef Izaki, M, Omi, T, “Transparent Zinc Oxide Films Prepared by Electrochemical Reaction.” Appl. Phys. Lett., 68 (17) 2439–2440 (1996)CrossRef
39.
Zurück zum Zitat Yoshida, T, Komatsu, D, Shimokawa, N, Minoura, H, “Mechanism of Cathodic Electrodeposition of Zinc Oxide Thin Films from Aqueous Zinc Nitrate Baths.” Thin Solid Films, 451–452 166–169 (2004)CrossRef Yoshida, T, Komatsu, D, Shimokawa, N, Minoura, H, “Mechanism of Cathodic Electrodeposition of Zinc Oxide Thin Films from Aqueous Zinc Nitrate Baths.” Thin Solid Films, 451–452 166–169 (2004)CrossRef
40.
Zurück zum Zitat Wei, S, Lian, J, Chen, X, Jiang, Q, “Effects of Seed Layer on the Structure and Property of Zinc Oxide Thin Films Electrochemically Deposited on ITO-Coated Glass.” Appl. Surf. Sci., 254 (20) 6605–6610 (2008) Wei, S, Lian, J, Chen, X, Jiang, Q, “Effects of Seed Layer on the Structure and Property of Zinc Oxide Thin Films Electrochemically Deposited on ITO-Coated Glass.” Appl. Surf. Sci., 254 (20) 6605–6610 (2008)
41.
Zurück zum Zitat Sun, S, Jiao, S, Zhang, K, Wang, D, Gao, S, Li, H, Wang, J, Yu, Q, Guo, F, Zhao, L, “Nucleation Effect and Growth Mechanism of ZnO Nanostructures by Electrodeposition from Aqueous Zinc Nitrate Baths.” J. Cryst. Growth, 359 15–19 (2012)CrossRef Sun, S, Jiao, S, Zhang, K, Wang, D, Gao, S, Li, H, Wang, J, Yu, Q, Guo, F, Zhao, L, “Nucleation Effect and Growth Mechanism of ZnO Nanostructures by Electrodeposition from Aqueous Zinc Nitrate Baths.” J. Cryst. Growth, 359 15–19 (2012)CrossRef
43.
Zurück zum Zitat Gültekin, ND, “Investigation of Thermal and Electrical Conductivity Properties of Carbon Black Coated Cotton Fabrics.” Marmara Univ. J. Sci., 27 (3) 91–94 (2015) Gültekin, ND, “Investigation of Thermal and Electrical Conductivity Properties of Carbon Black Coated Cotton Fabrics.” Marmara Univ. J. Sci., 27 (3) 91–94 (2015)
44.
Zurück zum Zitat Xue, CH, Yin, W, Zhang, P, Ji, PT, Jia, ST, “UV-Durable Superhydrophobic Textiles with UV-Shielding Properties by Introduction of ZnO/SiO2 Core/Shell Nanorods on PET Fibers and Hydrophobization.” Colloids Surf. A Physiochem. Eng. Asp., 427 7–12 (2013)CrossRef Xue, CH, Yin, W, Zhang, P, Ji, PT, Jia, ST, “UV-Durable Superhydrophobic Textiles with UV-Shielding Properties by Introduction of ZnO/SiO2 Core/Shell Nanorods on PET Fibers and Hydrophobization.” Colloids Surf. A Physiochem. Eng. Asp., 427 7–12 (2013)CrossRef
45.
Zurück zum Zitat Miyachi, M, Yamanoi, Y, Shibata, Y, Matsumoto, H, Nakazato, K, Konno, M, Inoue, Y, Nishihara, H, “Surfactant-Enhanced Performance of a Bio-conjugated Photodetecto Composed of Photosystem I Coupled to a Gold Nanoparticles.” Chem. Commun., 46 2557–2559 (2010)CrossRef Miyachi, M, Yamanoi, Y, Shibata, Y, Matsumoto, H, Nakazato, K, Konno, M, Inoue, Y, Nishihara, H, “Surfactant-Enhanced Performance of a Bio-conjugated Photodetecto Composed of Photosystem I Coupled to a Gold Nanoparticles.” Chem. Commun., 46 2557–2559 (2010)CrossRef
46.
Zurück zum Zitat Shelke, NT, Karche, BR, “Ultraviolet Photosensor Based on Few Layered Reduced Graphene Oxide Nanosheets.” Appl. Surf. Sci., 418 374–379 (2017)CrossRef Shelke, NT, Karche, BR, “Ultraviolet Photosensor Based on Few Layered Reduced Graphene Oxide Nanosheets.” Appl. Surf. Sci., 418 374–379 (2017)CrossRef
Metadaten
Titel
Fabrication of multifunctional smart polyester fabric via electrochemical deposition of ZnO nano-/microhierarchical structures
verfasst von
U. G. Mihiri Ekanayake
K. E. D. Y. Taniya Dayananda
Nadeesha Rathuwadu
M. M. M. G. Prasanga G. Mantilaka
Publikationsdatum
21.03.2022
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 4/2022
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-021-00606-6

Weitere Artikel der Ausgabe 4/2022

Journal of Coatings Technology and Research 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.