Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2020

22.04.2020

Fabrication of Three-Dimensional Graphene/Cu-Ag Composites by In Situ Chemical Vapor Deposition and Their Properties

verfasst von: Shuaitao Cai, Xiaohong Chen, Ping Liu, Honglei Zhou, Shaoli Fu, Kai Xu, Shaohua Chen, Dong Liang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-quality several-layer graphene film was fabricated on Cu-Ag alloy powder by in situ CVD at 900 °C, and three-dimensional graphene/copper-silver composites (Cu-Ag/G) were fabricated by spark plasma sintering (SPS). The analysis of XRD and EDS shows that the Ag element is uniformly dissolved in the matrix. The results of SEM, TEM and RAMAN show that several-layer graphene film was prepared in situ on the alloy substrate at atemperature as low as 900 °C has high quality and tightly wrapped around the matrix. The performance tests show that the tensile strength of Cu-Ag/G composites is 342 MPa, which is 23.5 and 33.1% higher than that of the unreinforced Cu-Ag (277 MPa) and Cu/G (257 MPa), respectively. The coefficient of friction of Cu-Ag/G composites is 0.23, which is 51 and 30% lower than Cu-Ag (0.47) and Cu/G (0.33), respectively. The corrosion potential of Cu-Ag/G composites shifted towards more positive values, and the corrosion current density decreased significantly. The corrosion inhibition efficiency of Cu-Ag/G reaches 74.70% which is stronger than Cu/G (45.39%), and the corrosion rate is 0.236 mm/year. The successful fabrication of Cu-Ag/G composites with excellent comprehensive properties provides a new way to further improve the performance of graphene/copper composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, and P.M. Ajayan, Composites with Carbon Nanotubes and Graphene: An Outlook, Science, 2018, 362(6414), p 547–553CrossRef I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, and P.M. Ajayan, Composites with Carbon Nanotubes and Graphene: An Outlook, Science, 2018, 362(6414), p 547–553CrossRef
2.
Zurück zum Zitat A. Sakhaee-Pour, Elastic Properties of Single-Layered Graphene Sheet, Solid State Commun., 2009, 149, p 91–95CrossRef A. Sakhaee-Pour, Elastic Properties of Single-Layered Graphene Sheet, Solid State Commun., 2009, 149, p 91–95CrossRef
3.
Zurück zum Zitat S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 2007, 100(1), p 16602CrossRef S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 2007, 100(1), p 16602CrossRef
4.
Zurück zum Zitat X. Gao, H. Yue, E. Guo, H. Zhang, X.Y. Lin, L.H. Yao, and B. Wang, Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites, Powder Technol., 2016, 301, p 601–607CrossRef X. Gao, H. Yue, E. Guo, H. Zhang, X.Y. Lin, L.H. Yao, and B. Wang, Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites, Powder Technol., 2016, 301, p 601–607CrossRef
5.
Zurück zum Zitat Y.K. Chen, X. Zhang, E. Liu, C.N. He, Y.J. Han, Q.Y. Li, P. Nash, and N.Q. Zhao, Fabrication of Three-Dimensional Graphene/Cu Composite by In-situ CVD and its Strengthening Mechanism, J. Alloys Compd., 2016, 688, p 69–76CrossRef Y.K. Chen, X. Zhang, E. Liu, C.N. He, Y.J. Han, Q.Y. Li, P. Nash, and N.Q. Zhao, Fabrication of Three-Dimensional Graphene/Cu Composite by In-situ CVD and its Strengthening Mechanism, J. Alloys Compd., 2016, 688, p 69–76CrossRef
6.
Zurück zum Zitat X.H. Chen, P.Z. Liu, P. Liu, and H.H. Chen, Preparationof Copper-Graphene Layered Composites by Spark Plasma Sintering, Mater. Sci. Technol. Lond., 2018, 34(2), p 1–7CrossRef X.H. Chen, P.Z. Liu, P. Liu, and H.H. Chen, Preparationof Copper-Graphene Layered Composites by Spark Plasma Sintering, Mater. Sci. Technol. Lond., 2018, 34(2), p 1–7CrossRef
7.
Zurück zum Zitat J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, and S. Jeon, Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process, Adv. Mater., 2013, 25, p 6724–6729CrossRef J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, and S. Jeon, Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process, Adv. Mater., 2013, 25, p 6724–6729CrossRef
8.
Zurück zum Zitat S.Y. Wang, G.K. Wang, X. Zhang, Y.L. Tang, J.W. Wu, X. Xiang, X.T. Zu, and Q.K. Yu, Novel Flower-Like Graphene Foam Directly Grown on a Nickel Template by Chemical Vapor Deposition, Carbon, 2017, 120, p 103–110CrossRef S.Y. Wang, G.K. Wang, X. Zhang, Y.L. Tang, J.W. Wu, X. Xiang, X.T. Zu, and Q.K. Yu, Novel Flower-Like Graphene Foam Directly Grown on a Nickel Template by Chemical Vapor Deposition, Carbon, 2017, 120, p 103–110CrossRef
9.
Zurück zum Zitat Y. Tang, X. Yang, R. Wang, and M.X. Li, Enhancement of the Mechanical Properties of Graphene-Copper Composites with Graphene-Nickel Hybrids, Mater. Sci. Eng. A, 2014, 599(2), p 247–254CrossRef Y. Tang, X. Yang, R. Wang, and M.X. Li, Enhancement of the Mechanical Properties of Graphene-Copper Composites with Graphene-Nickel Hybrids, Mater. Sci. Eng. A, 2014, 599(2), p 247–254CrossRef
10.
Zurück zum Zitat C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, Atomic Structure of Reduced Graphene Oxide, Nano Lett., 2010, 10, p 1144–1148CrossRef C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, Atomic Structure of Reduced Graphene Oxide, Nano Lett., 2010, 10, p 1144–1148CrossRef
11.
Zurück zum Zitat K. Chu and C. Jia, Enhanced Strength in Bulk Graphene-Copper Composites, Phys. Status Solidi A, 2014, 211(1), p 184–190CrossRef K. Chu and C. Jia, Enhanced Strength in Bulk Graphene-Copper Composites, Phys. Status Solidi A, 2014, 211(1), p 184–190CrossRef
12.
Zurück zum Zitat S.Y. Wang, S.B. Han, G.Q. Xin, J.L. Lin, R.H. Wei, J. Lian, K. Sun, X.T. Zu, and Q.K. Yu, High-quality Graphene Directly Grown on Cu Nanoparticles for Cu-Graphene Nanocomposites, Mater. Des., 2018, 139, p 181–187CrossRef S.Y. Wang, S.B. Han, G.Q. Xin, J.L. Lin, R.H. Wei, J. Lian, K. Sun, X.T. Zu, and Q.K. Yu, High-quality Graphene Directly Grown on Cu Nanoparticles for Cu-Graphene Nanocomposites, Mater. Des., 2018, 139, p 181–187CrossRef
13.
Zurück zum Zitat K. Chu, F. Wang, Y.B. Li, X.H. Wang, D.J. Huang, and H. Zhang, Interface Structure and Strengthening Behavior of Graphene/CuCr Composites, Carbon, 2018, 133, p 127–139CrossRef K. Chu, F. Wang, Y.B. Li, X.H. Wang, D.J. Huang, and H. Zhang, Interface Structure and Strengthening Behavior of Graphene/CuCr Composites, Carbon, 2018, 133, p 127–139CrossRef
14.
Zurück zum Zitat H.A.S. Shin, J. Ryu, S.P. Cho, E.K. Lee, S. Cho, C. Lee, Y.C. Joo, and B.H. Hong, Highly Uniform Growth of Monolayer Graphene by Chemical Vapor Deposition on Cu-Ag Alloy Catalysts, Phys. Chem. Chem. Phys., 2014, 16, p 3087–3094CrossRef H.A.S. Shin, J. Ryu, S.P. Cho, E.K. Lee, S. Cho, C. Lee, Y.C. Joo, and B.H. Hong, Highly Uniform Growth of Monolayer Graphene by Chemical Vapor Deposition on Cu-Ag Alloy Catalysts, Phys. Chem. Chem. Phys., 2014, 16, p 3087–3094CrossRef
15.
Zurück zum Zitat H. Rho, S. Lee, S. Bae, T.W. Kim, D.S. Lee, H.J. Lee, J.Y. Hwang, T. Jeong, T. Jeong, S. Kim, J.S. Ha, and S.H. Lee, Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance, Sci. Rep., 2015, 5, p 12710CrossRef H. Rho, S. Lee, S. Bae, T.W. Kim, D.S. Lee, H.J. Lee, J.Y. Hwang, T. Jeong, T. Jeong, S. Kim, J.S. Ha, and S.H. Lee, Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance, Sci. Rep., 2015, 5, p 12710CrossRef
16.
Zurück zum Zitat H.-J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, and M. Chen, Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and StableCatalyst for Electrochemical Hydrogen Production, Angew. Chem. Int. Ed., 2015, 54, p 14031–14035CrossRef H.-J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, and M. Chen, Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and StableCatalyst for Electrochemical Hydrogen Production, Angew. Chem. Int. Ed., 2015, 54, p 14031–14035CrossRef
17.
Zurück zum Zitat M. Cao, D.-B. Xiong, L. Yang, S.S. Li, Y.Q. Xie, Q. Guo, Z.Q. Li, H. Adams, J.J. Gu, T.X. Fan, X.H. Zhang, and D. Zhang, Ultrahigh Electrical Conductivity of Graphene Embedded in Metals, Adv. Funct. Mater., 2019, 29, p 1806792CrossRef M. Cao, D.-B. Xiong, L. Yang, S.S. Li, Y.Q. Xie, Q. Guo, Z.Q. Li, H. Adams, J.J. Gu, T.X. Fan, X.H. Zhang, and D. Zhang, Ultrahigh Electrical Conductivity of Graphene Embedded in Metals, Adv. Funct. Mater., 2019, 29, p 1806792CrossRef
18.
Zurück zum Zitat A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Large Area, Few-Layer Graphene Filmson Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 2009, 9(1), p 30–35CrossRef A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Large Area, Few-Layer Graphene Filmson Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 2009, 9(1), p 30–35CrossRef
19.
Zurück zum Zitat A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Gayers, Phys. Rev. Lett., 2006, 97(18), p 187401CrossRef A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Gayers, Phys. Rev. Lett., 2006, 97(18), p 187401CrossRef
20.
Zurück zum Zitat H.J. Cao, D.B. Xiong, Z.Q. Tan, G.L. Fan, Z.Q. Li, Q. Guo, Y.S. Su, C.P. Guo, and D. Zhang, Thermal Properties of In Situ Grown Graphene Reinforced Copper Matrix Laminated Composites, J. Alloys Compd., 2019, 771, p 228–237CrossRef H.J. Cao, D.B. Xiong, Z.Q. Tan, G.L. Fan, Z.Q. Li, Q. Guo, Y.S. Su, C.P. Guo, and D. Zhang, Thermal Properties of In Situ Grown Graphene Reinforced Copper Matrix Laminated Composites, J. Alloys Compd., 2019, 771, p 228–237CrossRef
21.
Zurück zum Zitat H. Chen, W. Zhu, and Z. Zhang, Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growthon Stepped Metal Surfaces, Phys. Rev. Lett., 2010, 104(18), p 186101CrossRef H. Chen, W. Zhu, and Z. Zhang, Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growthon Stepped Metal Surfaces, Phys. Rev. Lett., 2010, 104(18), p 186101CrossRef
22.
Zurück zum Zitat Y.K. Chen, X. Zhang, E. Liu, C.N. He, C.S. Shi, J.J. Li, P. Nash, and N.Q. Zhao, Fabrication of In-situ Grown Graphene Reinforced Cu Matrix Composites, Sci. Rep., 2016, 6, p 19363CrossRef Y.K. Chen, X. Zhang, E. Liu, C.N. He, C.S. Shi, J.J. Li, P. Nash, and N.Q. Zhao, Fabrication of In-situ Grown Graphene Reinforced Cu Matrix Composites, Sci. Rep., 2016, 6, p 19363CrossRef
23.
Zurück zum Zitat Z.J. Qiao, T. Zhou, J.L. Kang, Z.Y. Yu, G.L. Zhang, M. Li, H.M. Lu, Y. Li, Q. Huang, L. Wang, X.R. Zheng, and Z.J. Zhang, Three-Dimensional Interpenetrating Network Graphene/Copper Composites with Simultaneously Enhanced Strength, Ductility and Conductivity, Mater. Lett., 2018, 224, p 37–41CrossRef Z.J. Qiao, T. Zhou, J.L. Kang, Z.Y. Yu, G.L. Zhang, M. Li, H.M. Lu, Y. Li, Q. Huang, L. Wang, X.R. Zheng, and Z.J. Zhang, Three-Dimensional Interpenetrating Network Graphene/Copper Composites with Simultaneously Enhanced Strength, Ductility and Conductivity, Mater. Lett., 2018, 224, p 37–41CrossRef
24.
Zurück zum Zitat M. Cao, D.-B. Xiong, Z.Q. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G.L. Fan, C.P. Guo, Z.Q. Li, and D. Zhang, Aligning Graphene in Bulk Copper: Nacre-Inspired Nanolaminated Architecture Coupled with In-situ Processing for Enhanced Mechanical Properties and High Electrical Conductivity, Carbon, 2017, 117, p 65–74CrossRef M. Cao, D.-B. Xiong, Z.Q. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G.L. Fan, C.P. Guo, Z.Q. Li, and D. Zhang, Aligning Graphene in Bulk Copper: Nacre-Inspired Nanolaminated Architecture Coupled with In-situ Processing for Enhanced Mechanical Properties and High Electrical Conductivity, Carbon, 2017, 117, p 65–74CrossRef
25.
Zurück zum Zitat D.-B. Xiong, M. Cao, Q. Guo, Z.Q. Tan, G.L. Fan, Z.Q. Li, and D. Zhang, Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite, ACS Nano, 2015, 9(7), p 6934–6943CrossRef D.-B. Xiong, M. Cao, Q. Guo, Z.Q. Tan, G.L. Fan, Z.Q. Li, and D. Zhang, Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite, ACS Nano, 2015, 9(7), p 6934–6943CrossRef
26.
Zurück zum Zitat J.N. Wei, Z.B. Li, and F.S. Han, Thermal Mismatch Dislocations in Macroscopic Graphite Particle-Reinforced Metal Matrix Composites Studied by Internal Friction, Phys. Status Solidi, 2015, 191(1), p 125–136CrossRef J.N. Wei, Z.B. Li, and F.S. Han, Thermal Mismatch Dislocations in Macroscopic Graphite Particle-Reinforced Metal Matrix Composites Studied by Internal Friction, Phys. Status Solidi, 2015, 191(1), p 125–136CrossRef
27.
Zurück zum Zitat S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Wettability and Surface Free Energy of Graphene Films, Langmuir, 2009, 25, p 11078–11081CrossRef S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Wettability and Surface Free Energy of Graphene Films, Langmuir, 2009, 25, p 11078–11081CrossRef
28.
Zurück zum Zitat D. Berman, A. Erdemir, and A.V. Sumant, Graphene: A New Emerging Lubricant, Mater. Today, 2014, 17, p 31–42CrossRef D. Berman, A. Erdemir, and A.V. Sumant, Graphene: A New Emerging Lubricant, Mater. Today, 2014, 17, p 31–42CrossRef
29.
Zurück zum Zitat Y. Peng, Z. Wang, and K. Zout, Friction and Wear Properties of Different Types of Graphene Nanosheets as Effective Solid Lubricants, Langmuir, 2015, 31, p 7782–7791CrossRef Y. Peng, Z. Wang, and K. Zout, Friction and Wear Properties of Different Types of Graphene Nanosheets as Effective Solid Lubricants, Langmuir, 2015, 31, p 7782–7791CrossRef
30.
Zurück zum Zitat B.Y. Jin, D.-B. Xiong, Z.Q. Tan, G.L. Fan, Q. Guo, Y.S. Su, Z.Q. Li, and D. Zhang, Enhanced Corrosion Resistance in Metal Matrix Composites Assembled from Graphene Encapsulated Copper Nanoflakes, Carbon, 2019, 142, p 482–490CrossRef B.Y. Jin, D.-B. Xiong, Z.Q. Tan, G.L. Fan, Q. Guo, Y.S. Su, Z.Q. Li, and D. Zhang, Enhanced Corrosion Resistance in Metal Matrix Composites Assembled from Graphene Encapsulated Copper Nanoflakes, Carbon, 2019, 142, p 482–490CrossRef
31.
Zurück zum Zitat Y. Raghupathy, K.A. Natarajan, and C. Srivastava, Anti-Corrosive and Anti-Microbial Properties of Nanocrystalline Ni-Ag Coatings, Mater. Sci. Eng. B, 2016, 206, p 1–8CrossRef Y. Raghupathy, K.A. Natarajan, and C. Srivastava, Anti-Corrosive and Anti-Microbial Properties of Nanocrystalline Ni-Ag Coatings, Mater. Sci. Eng. B, 2016, 206, p 1–8CrossRef
32.
Zurück zum Zitat A. Kamboj, Y. Raghupathy, M.Y. Rekha, and C. Srivastava, Morphology, Texture and Corrosion Behavior of Nanocrystalline Copper-Graphene Composite Coatings, JOM, 2017, 69(7), p 1149–1154CrossRef A. Kamboj, Y. Raghupathy, M.Y. Rekha, and C. Srivastava, Morphology, Texture and Corrosion Behavior of Nanocrystalline Copper-Graphene Composite Coatings, JOM, 2017, 69(7), p 1149–1154CrossRef
Metadaten
Titel
Fabrication of Three-Dimensional Graphene/Cu-Ag Composites by In Situ Chemical Vapor Deposition and Their Properties
verfasst von
Shuaitao Cai
Xiaohong Chen
Ping Liu
Honglei Zhou
Shaoli Fu
Kai Xu
Shaohua Chen
Dong Liang
Publikationsdatum
22.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04794-x

Weitere Artikel der Ausgabe 4/2020

Journal of Materials Engineering and Performance 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.