Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2016

13.08.2016

Facile preparation of TiO2 nanocrystals inserted in monodispersed mesoporous SiO2 nanospheres for enhanced photocatalytic activity

verfasst von: Tianxiu Qin, Shuxia Zhang, Pei Chen, Fengqi Zhao, Hongxu Gao, Xinbing Chen, Zhongwei An

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

TiO2 nanocrystals are inserted in the pores of monodispersed mesoporous SiO2 nanospheres with 20–35 nm diameter by a facile two-step method involving vacuum-rotary evaporation and subsequent calcination. Characterization by XRD, TEM, EDX, FT-IR and N2 sorption techniques suggests that, the pores of the mesoporous SiO2 nanosphere can effectively stabilize the anatase phase of TiO2 nanocrystals with size about 6 nm even at high temperature of 750 °C. The photocatalytic activities of the samples with different TiO2 loading amount were evaluated by the degradation of Rhodamine B dye in aqueous solution under UV-light irradiation. It is found that photocatalytic efficiencies of these materials are much better than commercial P25. Where the sample with TiO2 loading of 43 % exhibits the highest photocatalytic efficiencies with complete degradation of Rhodamine B within 32 min, which is attributed to the balance between high surface area and suitable TiO2 loading amount.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S.W. Verbruggen, TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J. Photochem. Photobiol., C 24, 64–82 (2015)CrossRef S.W. Verbruggen, TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J. Photochem. Photobiol., C 24, 64–82 (2015)CrossRef
2.
Zurück zum Zitat H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112, 5919–5948 (2012)CrossRef H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112, 5919–5948 (2012)CrossRef
3.
Zurück zum Zitat C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process for purification of polluted water: bridging fundamentals to applications. J. Nanomater. 2013, 1–14 (2013) C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process for purification of polluted water: bridging fundamentals to applications. J. Nanomater. 2013, 1–14 (2013)
4.
Zurück zum Zitat X. Chen, A. Selloni, Introduction: titanium dioxide (TiO2) nanomaterials. Chem. Rev. 114, 9281–9282 (2014)CrossRef X. Chen, A. Selloni, Introduction: titanium dioxide (TiO2) nanomaterials. Chem. Rev. 114, 9281–9282 (2014)CrossRef
5.
Zurück zum Zitat M. Ramezani, S.M.H. Mashkani, A.S. Nasab, H.G. Estarki, Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 26, 7588–7594 (2015) M. Ramezani, S.M.H. Mashkani, A.S. Nasab, H.G. Estarki, Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 26, 7588–7594 (2015)
6.
Zurück zum Zitat S.S.H. Mashkani, S.S.H. Mashkani, A.S. Nasab, Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27, 4351–4355 (2016) S.S.H. Mashkani, S.S.H. Mashkani, A.S. Nasab, Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27, 4351–4355 (2016)
7.
Zurück zum Zitat M.R. Nasrabadi, M. Behpour, A.S. Nasab, S.M.H. Mashkani, ZnFe2-xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015) M.R. Nasrabadi, M. Behpour, A.S. Nasab, S.M.H. Mashkani, ZnFe2-xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015)
8.
Zurück zum Zitat S.M.H. Mashkani, M. Maddahfar, A.S. Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci.: Mater. Electron. 27, 474–480 (2016) S.M.H. Mashkani, M. Maddahfar, A.S. Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci.: Mater. Electron. 27, 474–480 (2016)
9.
Zurück zum Zitat S.M.H. Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological, control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, 3612–3620 (2016)CrossRef S.M.H. Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological, control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, 3612–3620 (2016)CrossRef
10.
Zurück zum Zitat Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014)CrossRef Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014)CrossRef
11.
Zurück zum Zitat Y. Yin, E. Liu, H. Li, J. Wan, J. Fan, X. Hu, Fabrication of plasmonic Au/TiO2 nanotube arrays with enhanced photoelectrocatalytic activities. Ceram. Int. 42, 9387–9395 (2016)CrossRef Y. Yin, E. Liu, H. Li, J. Wan, J. Fan, X. Hu, Fabrication of plasmonic Au/TiO2 nanotube arrays with enhanced photoelectrocatalytic activities. Ceram. Int. 42, 9387–9395 (2016)CrossRef
12.
Zurück zum Zitat X. Yang, Y. Wang, Z. Wang, X. Lv, H. Jia, J. Kong, Preparation of CdS/TiO2 nanotube arrays and the enhanced photocatalytic property. Ceram. Int. 42, 7192–7202 (2016)CrossRef X. Yang, Y. Wang, Z. Wang, X. Lv, H. Jia, J. Kong, Preparation of CdS/TiO2 nanotube arrays and the enhanced photocatalytic property. Ceram. Int. 42, 7192–7202 (2016)CrossRef
13.
Zurück zum Zitat Z. Zhu, C.-T. Kao, B.-H. Tang, W.-C. Chang, R.-J. Wu, Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light. Ceram. Int. 42, 6749–6754 (2016)CrossRef Z. Zhu, C.-T. Kao, B.-H. Tang, W.-C. Chang, R.-J. Wu, Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light. Ceram. Int. 42, 6749–6754 (2016)CrossRef
14.
Zurück zum Zitat Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, The design of TiO2 nanostructures (Nanoparticle, Nanotube, and Nanosheet) and their photocatalytic activity. J. Phys. Chem. C 118, 12727–12733 (2014)CrossRef Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, The design of TiO2 nanostructures (Nanoparticle, Nanotube, and Nanosheet) and their photocatalytic activity. J. Phys. Chem. C 118, 12727–12733 (2014)CrossRef
15.
Zurück zum Zitat G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.-M. Cheng, Titanium dioxide crystals with tailored facets. Chem. Rev. 114, 9559–9612 (2014)CrossRef G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.-M. Cheng, Titanium dioxide crystals with tailored facets. Chem. Rev. 114, 9559–9612 (2014)CrossRef
16.
Zurück zum Zitat L. Li, S. Bai, W. Yin, S. Li, Y. Zhang, Z. Li, A novel etching and reconstruction route to ultrathin porous TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 41, 1627–1634 (2016)CrossRef L. Li, S. Bai, W. Yin, S. Li, Y. Zhang, Z. Li, A novel etching and reconstruction route to ultrathin porous TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 41, 1627–1634 (2016)CrossRef
17.
Zurück zum Zitat X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale 4, 1707–1716 (2012)CrossRef X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale 4, 1707–1716 (2012)CrossRef
18.
Zurück zum Zitat V. Amoli, S. Bhat, A. Maurya, B. Banerjee, A. Bhaumik, A.K. Sinha, Tailored synthesis of porous TiO2 nanocubes and nanoparallelepipeds with exposed {111} facets and mesoscopic void space: a superior candidate for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 26022–26035 (2015). doi:10.1021/acsami.5b07954 CrossRef V. Amoli, S. Bhat, A. Maurya, B. Banerjee, A. Bhaumik, A.K. Sinha, Tailored synthesis of porous TiO2 nanocubes and nanoparallelepipeds with exposed {111} facets and mesoscopic void space: a superior candidate for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 26022–26035 (2015). doi:10.​1021/​acsami.​5b07954 CrossRef
19.
Zurück zum Zitat J.C. Yu, L. Zhang, J. Yu, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem. Mater. 14, 4647–4653 (2002)CrossRef J.C. Yu, L. Zhang, J. Yu, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem. Mater. 14, 4647–4653 (2002)CrossRef
20.
Zurück zum Zitat M. Besançon, L. Michelin, L. Josien, L. Vidal, K. Assaker, M. Bonne, B. Lebeau, J.-L. Blin, Influence of the porous texture of SBA-15 mesoporous silica on the anatase formation in TiO2–SiO2 nanocomposites. New J. Chem. 40, 4386–4397 (2016). doi:10.1039/C5NJ02859K M. Besançon, L. Michelin, L. Josien, L. Vidal, K. Assaker, M. Bonne, B. Lebeau, J.-L. Blin, Influence of the porous texture of SBA-15 mesoporous silica on the anatase formation in TiO2–SiO2 nanocomposites. New J. Chem. 40, 4386–4397 (2016). doi:10.​1039/​C5NJ02859K
21.
Zurück zum Zitat A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl. Catal. A Gen. 389, 1–8 (2010)CrossRef A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl. Catal. A Gen. 389, 1–8 (2010)CrossRef
22.
Zurück zum Zitat Y. Li, N. Li, J. Tu, X. Li, B. Wang, Y. Chi, TiO2 supported on rod-like mesoporous silica SBA-15: preparation, characterization and photocatalytic behaviour. Mater. Res. Bull. 46, 2317–2322 (2011)CrossRef Y. Li, N. Li, J. Tu, X. Li, B. Wang, Y. Chi, TiO2 supported on rod-like mesoporous silica SBA-15: preparation, characterization and photocatalytic behaviour. Mater. Res. Bull. 46, 2317–2322 (2011)CrossRef
23.
Zurück zum Zitat S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J. Hazard. Mater. 258–259, 19–26 (2013)CrossRef S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J. Hazard. Mater. 258–259, 19–26 (2013)CrossRef
24.
Zurück zum Zitat K. Zhang, L.-L. Xu, J.-G. Jiang, N. Calin, K.-F. Lam, S.-J. Zhang, Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 135, 2427–2430 (2013)CrossRef K. Zhang, L.-L. Xu, J.-G. Jiang, N. Calin, K.-F. Lam, S.-J. Zhang, Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 135, 2427–2430 (2013)CrossRef
25.
Zurück zum Zitat J.L. Vivero-Escoto, R.C. Huxford-Phillips, W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 41, 2673–2685 (2012)CrossRef J.L. Vivero-Escoto, R.C. Huxford-Phillips, W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 41, 2673–2685 (2012)CrossRef
26.
Zurück zum Zitat R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L.M. Ilharco, M. Pagliaro, The sol–gel route to advanced silica-based materials and recent applications. Chem. Rev. 113, 6592–6620 (2013)CrossRef R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L.M. Ilharco, M. Pagliaro, The sol–gel route to advanced silica-based materials and recent applications. Chem. Rev. 113, 6592–6620 (2013)CrossRef
27.
Zurück zum Zitat X. Zhang, L. Zhang, Y. Li, L. Di, Atmospheric-pressure cold plasma for fabrication of anatase–rutile mixed TiO2 with the assistance of ionic liquid. Catal. Today 256, 215–220 (2015)CrossRef X. Zhang, L. Zhang, Y. Li, L. Di, Atmospheric-pressure cold plasma for fabrication of anatase–rutile mixed TiO2 with the assistance of ionic liquid. Catal. Today 256, 215–220 (2015)CrossRef
28.
Zurück zum Zitat Y.-M. Sung, J.-K. Lee, W.-S. Chae, Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles. Cryst. Growth Des. 6, 805–808 (2006)CrossRef Y.-M. Sung, J.-K. Lee, W.-S. Chae, Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles. Cryst. Growth Des. 6, 805–808 (2006)CrossRef
29.
Zurück zum Zitat K.Y. Jung, S.B. Park, Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. J. Photochem. Photobiol., A 127, 117–122 (1999)CrossRef K.Y. Jung, S.B. Park, Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. J. Photochem. Photobiol., A 127, 117–122 (1999)CrossRef
30.
Zurück zum Zitat S. Li, J. Chen, F. Zheng, Y. Li, F. Huang, Synthesis of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity. Nanoscale 5, 12150–12155 (2013)CrossRef S. Li, J. Chen, F. Zheng, Y. Li, F. Huang, Synthesis of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity. Nanoscale 5, 12150–12155 (2013)CrossRef
31.
Zurück zum Zitat Y.-H. Zhang, A. Reller, Phase transformation and grain growth of doped nanosized titania. Mater. Sci. Energy C 19, 323–326 (2002)CrossRef Y.-H. Zhang, A. Reller, Phase transformation and grain growth of doped nanosized titania. Mater. Sci. Energy C 19, 323–326 (2002)CrossRef
32.
Zurück zum Zitat V. Žunič, S.D. Škapin, D. Suvorov, The assembly of TiO2 nanoparticles into micrometer-sized structures, photocatalytically active under UV and vis light. J. Am. Ceram. Soc. 98, 2997–3005 (2015)CrossRef V. Žunič, S.D. Škapin, D. Suvorov, The assembly of TiO2 nanoparticles into micrometer-sized structures, photocatalytically active under UV and vis light. J. Am. Ceram. Soc. 98, 2997–3005 (2015)CrossRef
33.
Zurück zum Zitat Q. Liu, Z. Tang, M. Wu, B. Liao, H. Zhou, B. Ou, G. Yu, Z. Zhou, X. Li, Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Adv. 5, 8933–8937 (2015)CrossRef Q. Liu, Z. Tang, M. Wu, B. Liao, H. Zhou, B. Ou, G. Yu, Z. Zhou, X. Li, Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Adv. 5, 8933–8937 (2015)CrossRef
34.
Zurück zum Zitat L. Zhang, Z. Xing, H. Zhang, Z. Li, X. Wu, X. Zhang, High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl. Catal. B Environ. 180, 521–529 (2016)CrossRef L. Zhang, Z. Xing, H. Zhang, Z. Li, X. Wu, X. Zhang, High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl. Catal. B Environ. 180, 521–529 (2016)CrossRef
35.
Zurück zum Zitat S. Rasalingam, H.S. Kibombo, C.-M. Wu, S. Budhi, R. Peng, J. Baltrusaitis, Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catal. Commun. 31, 66–70 (2013)CrossRef S. Rasalingam, H.S. Kibombo, C.-M. Wu, S. Budhi, R. Peng, J. Baltrusaitis, Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catal. Commun. 31, 66–70 (2013)CrossRef
36.
Zurück zum Zitat R. Singh, R. Bapat, L. Qin, H. Feng, V. Polshettiwar, Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal. 6, 2770–2784 (2016)CrossRef R. Singh, R. Bapat, L. Qin, H. Feng, V. Polshettiwar, Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal. 6, 2770–2784 (2016)CrossRef
37.
Zurück zum Zitat S.K. Gupta, R. Desai, P.K. Jha, S. Sahoo, D. Kirin, Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectrosc. 41, 350–355 (2010) S.K. Gupta, R. Desai, P.K. Jha, S. Sahoo, D. Kirin, Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectrosc. 41, 350–355 (2010)
38.
Zurück zum Zitat L. Liu, X. Chen, Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev. 114, 9890–9918 (2014)CrossRef L. Liu, X. Chen, Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev. 114, 9890–9918 (2014)CrossRef
39.
Zurück zum Zitat H.-J. Kim, Y.-G. Shul, H. Han, Photocatalytic properties of silica-supported TiO2. Top. Catal. 35, 287–293 (2005)CrossRef H.-J. Kim, Y.-G. Shul, H. Han, Photocatalytic properties of silica-supported TiO2. Top. Catal. 35, 287–293 (2005)CrossRef
40.
Zurück zum Zitat E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catal. Today 252, 128–135 (2015)CrossRef E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catal. Today 252, 128–135 (2015)CrossRef
41.
Zurück zum Zitat J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 50, 13971–13974 (2014)CrossRef J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 50, 13971–13974 (2014)CrossRef
Metadaten
Titel
Facile preparation of TiO2 nanocrystals inserted in monodispersed mesoporous SiO2 nanospheres for enhanced photocatalytic activity
verfasst von
Tianxiu Qin
Shuxia Zhang
Pei Chen
Fengqi Zhao
Hongxu Gao
Xinbing Chen
Zhongwei An
Publikationsdatum
13.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5462-9

Weitere Artikel der Ausgabe 12/2016

Journal of Materials Science: Materials in Electronics 12/2016 Zur Ausgabe

Neuer Inhalt