Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

4. Factors Affecting Nanoindentation Test Data

verfasst von : Anthony C. Fischer-Cripps

Erschienen in: Nanoindentation

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In conventional indentation tests, the area of contact between the indenter and the specimen at maximum load is usually calculated from the diameter or size of the residual impression after the load has been removed. The size of the residual impression is usually considered to be identical to the contact area at full load, although the depth of penetration may of course be significantly reduced by elastic recovery. Direct imaging of residual impressions made in the submicron regime are usually only possible using inconvenient means and, for this reason, it is usual to measure the load and depth of penetration directly during loading and unloading of the indenter. These measurements are then used to determine the projected area of contact for the purpose of calculating hardness and elastic modulus. In practice, various errors are associated with this procedure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N.M. Jennett and J. Meneve, “Depth sensing indentation of thin hard films: a study of modulus measurement sensitivity to indentation parameters,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 239–244.CrossRef N.M. Jennett and J. Meneve, “Depth sensing indentation of thin hard films: a study of modulus measurement sensitivity to indentation parameters,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 239–244.CrossRef
2.
Zurück zum Zitat G. Feng and A.H.W. Ngan, “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation,” J. Mater. Res. 17 3, 2002, pp. 660–668.CrossRef G. Feng and A.H.W. Ngan, “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation,” J. Mater. Res. 17 3, 2002, pp. 660–668.CrossRef
3.
Zurück zum Zitat A.C. Fischer-Cripps, unpublished work, 2003. A.C. Fischer-Cripps, unpublished work, 2003.
4.
Zurück zum Zitat B.R. Lawn, B.J. Hockey and S.M. Weiderhorn, “Thermal effects in sharp-particle impact,” J. Amer. Ceram. Soc. 63 5–6, 1980, pp. 356–358.CrossRef B.R. Lawn, B.J. Hockey and S.M. Weiderhorn, “Thermal effects in sharp-particle impact,” J. Amer. Ceram. Soc. 63 5–6, 1980, pp. 356–358.CrossRef
5.
Zurück zum Zitat K. Herrmann K, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann, “Progress in determination of the area function of indenters used for nanoindentation,” Thin Solid Films, 377, 2000, pp. 394–400.CrossRef K. Herrmann K, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann, “Progress in determination of the area function of indenters used for nanoindentation,” Thin Solid Films, 377, 2000, pp. 394–400.CrossRef
6.
Zurück zum Zitat S. Enders, P. Grau, and H.M. Hawthorne, “Determination of the real indenter shape for nanoindentation/nanotribology tests by surface metrological and analytical investigations,” Mat. Res. Soc. Symp. Proc. 649, 2001, pp. Q3.6.1–Q3.6.6. S. Enders, P. Grau, and H.M. Hawthorne, “Determination of the real indenter shape for nanoindentation/nanotribology tests by surface metrological and analytical investigations,” Mat. Res. Soc. Symp. Proc. 649, 2001, pp. Q3.6.1–Q3.6.6.
7.
8.
Zurück zum Zitat A. Bolshakov and G.M. Pharr, “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques,” J. Mater. Res. 13 4, 1998, pp. 1049–1058.CrossRef A. Bolshakov and G.M. Pharr, “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques,” J. Mater. Res. 13 4, 1998, pp. 1049–1058.CrossRef
9.
Zurück zum Zitat J.L. Hay, W.C. Oliver, A. Bolshakov, and G.M. Pharr “Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation,” Mat. Res. Proc. Symp. 522, 1998, pp. 101–106.CrossRef J.L. Hay, W.C. Oliver, A. Bolshakov, and G.M. Pharr “Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation,” Mat. Res. Proc. Symp. 522, 1998, pp. 101–106.CrossRef
10.
Zurück zum Zitat N.X. Randall and C. Julia-Schmutz, “Evolution of contact area and pile-up during the nanoindentation of soft coatings on hard substrates.” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 21–26.CrossRef N.X. Randall and C. Julia-Schmutz, “Evolution of contact area and pile-up during the nanoindentation of soft coatings on hard substrates.” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 21–26.CrossRef
11.
Zurück zum Zitat K.W. McElhaney, J.J. Vlassak, and W.D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” J. Mater. Res. 13 5, 1998, pp. 1300–1306.CrossRef K.W. McElhaney, J.J. Vlassak, and W.D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” J. Mater. Res. 13 5, 1998, pp. 1300–1306.CrossRef
12.
Zurück zum Zitat Y. Choi, H-S Lee, and D. Kwon, “Analysis of sharp-tip indentation load-depth curve for contact area determination taking into account pile-up and sink-in effects,” J. Mater. Res. 19 11, 2004, pp. 3307–3315.CrossRef Y. Choi, H-S Lee, and D. Kwon, “Analysis of sharp-tip indentation load-depth curve for contact area determination taking into account pile-up and sink-in effects,” J. Mater. Res. 19 11, 2004, pp. 3307–3315.CrossRef
13.
Zurück zum Zitat Y.-T. Cheng, Z. Li, and C.-M. Cheng, “Scaling relationships for indentation measurements,” Phil. Mag. A 82, 2002, pp.1821–1829.CrossRef Y.-T. Cheng, Z. Li, and C.-M. Cheng, “Scaling relationships for indentation measurements,” Phil. Mag. A 82, 2002, pp.1821–1829.CrossRef
14.
Zurück zum Zitat H. Li, A. Ghosh, Y.H. Yan, and R.C. Bradt, “The frictional component of the indentation size effect in low load microhardness testing,” J. Mater. Res. 8 5, 1993, pp. 1028–1032.CrossRef H. Li, A. Ghosh, Y.H. Yan, and R.C. Bradt, “The frictional component of the indentation size effect in low load microhardness testing,” J. Mater. Res. 8 5, 1993, pp. 1028–1032.CrossRef
15.
Zurück zum Zitat N. Gane, “The direct measurement of the strength of metals on a sub-micrometre scale,” Proc. R. Soc. A317, 1970, pp. 367–391.CrossRef N. Gane, “The direct measurement of the strength of metals on a sub-micrometre scale,” Proc. R. Soc. A317, 1970, pp. 367–391.CrossRef
16.
Zurück zum Zitat S.J. Bull, T.F. Page, and E.H. Yoffe, “An explanation of the indentation size effects in ceramics,” Phil. Mag. Lett. 59 6, 1989, pp. 281–288.CrossRef S.J. Bull, T.F. Page, and E.H. Yoffe, “An explanation of the indentation size effects in ceramics,” Phil. Mag. Lett. 59 6, 1989, pp. 281–288.CrossRef
17.
Zurück zum Zitat W.D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids, 46 3, 1998, pp. 411–425.CrossRefMATH W.D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids, 46 3, 1998, pp. 411–425.CrossRefMATH
18.
Zurück zum Zitat J. Lou, P. Shrotriya, T. Buchheit, D. Yang and W.O. Sobojeyo, “Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures,” J. Mater. Res. 18 3, 2003, pp. 719–728.CrossRef J. Lou, P. Shrotriya, T. Buchheit, D. Yang and W.O. Sobojeyo, “Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures,” J. Mater. Res. 18 3, 2003, pp. 719–728.CrossRef
19.
Zurück zum Zitat E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix, “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation,” J. Mech. Phys. Solids, 51, 2003, pp. 201–920.CrossRef E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix, “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation,” J. Mech. Phys. Solids, 51, 2003, pp. 201–920.CrossRef
20.
Zurück zum Zitat N.I. Tymiak, D.E. Kramer, D.F. Bahr, T.J. Wyrobek and W.W. Gerberich, “Plastic strain and strain gradients at very small indentation depths,” Acta Mater. 49, 2001, pp. 1021–1034.CrossRef N.I. Tymiak, D.E. Kramer, D.F. Bahr, T.J. Wyrobek and W.W. Gerberich, “Plastic strain and strain gradients at very small indentation depths,” Acta Mater. 49, 2001, pp. 1021–1034.CrossRef
21.
Zurück zum Zitat T.-Y. Zhang and W.-H. Zu, “Surface effects on nanoindentation,” J. Mater. Res. 17 7, 2002, pp. 1715–1720.CrossRef T.-Y. Zhang and W.-H. Zu, “Surface effects on nanoindentation,” J. Mater. Res. 17 7, 2002, pp. 1715–1720.CrossRef
22.
Zurück zum Zitat J.F. Archard, “Elastic deformations and the law of friction,” Proc. R. Soc. A243, 1957, pp. 190–205.CrossRef J.F. Archard, “Elastic deformations and the law of friction,” Proc. R. Soc. A243, 1957, pp. 190–205.CrossRef
23.
Zurück zum Zitat J.A. Greenwood and J.B.P. Williamson, “Contact of nominally flat surfaces,” Proc. R. Soc. A295, 1966, pp. 300–319.CrossRef J.A. Greenwood and J.B.P. Williamson, “Contact of nominally flat surfaces,” Proc. R. Soc. A295, 1966, pp. 300–319.CrossRef
24.
Zurück zum Zitat J.A. Greenwood and J.H. Tripp, “The contact of two nominally rough surfaces,” Proc. Inst. Mech. Eng. 185, 1971, pp. 625–633.CrossRef J.A. Greenwood and J.H. Tripp, “The contact of two nominally rough surfaces,” Proc. Inst. Mech. Eng. 185, 1971, pp. 625–633.CrossRef
25.
26.
Zurück zum Zitat D.L. Joslin and W.C. Oliver, “A new method for analyzing data from continuous depth-sensing microindentation tests,” J. Mater. Res. 5 1, 1990, pp. 123–126.CrossRef D.L. Joslin and W.C. Oliver, “A new method for analyzing data from continuous depth-sensing microindentation tests,” J. Mater. Res. 5 1, 1990, pp. 123–126.CrossRef
27.
Zurück zum Zitat J.S. Field, “Understanding the penetration resistance of modified surface layers,” Surf. Coat. Tech. 36, 1988, pp. 817–827.CrossRef J.S. Field, “Understanding the penetration resistance of modified surface layers,” Surf. Coat. Tech. 36, 1988, pp. 817–827.CrossRef
28.
Zurück zum Zitat A.C. Fischer-Cripps, “The sharpness of a Berkovich indenter.” J.Mater.Res. 25, 5, 2010, pp. 927–934.CrossRef A.C. Fischer-Cripps, “The sharpness of a Berkovich indenter.” J.Mater.Res. 25, 5, 2010, pp. 927–934.CrossRef
29.
Zurück zum Zitat W.A. Caw, “The elastic behaviour of a sharp obtuse wedge impressed on a plane,” J. Sci. Instr., J. Physics E, 2 2, 1969, pp. 73–78.CrossRef W.A. Caw, “The elastic behaviour of a sharp obtuse wedge impressed on a plane,” J. Sci. Instr., J. Physics E, 2 2, 1969, pp. 73–78.CrossRef
30.
Zurück zum Zitat T.Y. Tsui, W.C. Oliver, and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation. 1. Experimental studies in an aluminium alloy,” J. Mater. Res. 11 3, 1996, pp. 752–759.CrossRef T.Y. Tsui, W.C. Oliver, and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation. 1. Experimental studies in an aluminium alloy,” J. Mater. Res. 11 3, 1996, pp. 752–759.CrossRef
31.
Zurück zum Zitat K.O. Kese, Z.C. Li, and B. Bergman, “Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation,” J. Mater. Res. 19 10, 2004, pp. 3109–3119.CrossRef K.O. Kese, Z.C. Li, and B. Bergman, “Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation,” J. Mater. Res. 19 10, 2004, pp. 3109–3119.CrossRef
32.
Zurück zum Zitat W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Effect of heat treatment on the structure and properties of ion-plated TiN films”, Surf. Coat. Technol. 168, 2003, pp. 43–50.CrossRef W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Effect of heat treatment on the structure and properties of ion-plated TiN films”, Surf. Coat. Technol. 168, 2003, pp. 43–50.CrossRef
33.
Zurück zum Zitat C.-H. Ma, J.-H. Huang, and H. Chen, Surf. Coat. Technol., to be published. C.-H. Ma, J.-H. Huang, and H. Chen, Surf. Coat. Technol., to be published.
34.
Zurück zum Zitat A.C. Fischer-Cripps, unpublished work. A.C. Fischer-Cripps, unpublished work.
35.
Zurück zum Zitat V. Brizmer, Y. Zait, Y. Kligerman and I. Etsion, “The effect of contact conditions and material properties on elastic-plastic spherical contact,” J. Mech. Mat. Struct. 1 5, 2006, pp. 865–879.CrossRef V. Brizmer, Y. Zait, Y. Kligerman and I. Etsion, “The effect of contact conditions and material properties on elastic-plastic spherical contact,” J. Mech. Mat. Struct. 1 5, 2006, pp. 865–879.CrossRef
36.
Zurück zum Zitat A.C. Fischer-Cripps, Introduction to contact mechanics, 2nd Ed. Springer-Verlag, New York, 2007.CrossRefMATH A.C. Fischer-Cripps, Introduction to contact mechanics, 2nd Ed. Springer-Verlag, New York, 2007.CrossRefMATH
37.
Zurück zum Zitat Y.P. Zhao, X. Shi, and W.J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 2003, pp. 348–353. Y.P. Zhao, X. Shi, and W.J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 2003, pp. 348–353.
38.
Zurück zum Zitat F.B. Langitan and B.R. Lawn, “Hertzian fracture experiments on abraded glass surfaces as definitive evidence for an energy balance explanation of Auerbach’s law,” J. App. Phys. 40 10, 1969, pp. 4009–4017.CrossRef F.B. Langitan and B.R. Lawn, “Hertzian fracture experiments on abraded glass surfaces as definitive evidence for an energy balance explanation of Auerbach’s law,” J. App. Phys. 40 10, 1969, pp. 4009–4017.CrossRef
Metadaten
Titel
Factors Affecting Nanoindentation Test Data
verfasst von
Anthony C. Fischer-Cripps
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-9872-9_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.