Skip to main content
Erschienen in: Electrical Engineering 4/2013

01.12.2013 | Original Paper

Factors influencing ampacity and temperature of underground power cables

verfasst von: I. A. Metwally, A. H. Al-Badi, A. S. Al Farsi

Erschienen in: Electrical Engineering | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the factors that influence ampacity and temperature rise of three-phase, single-core 33- and 500-kV XLPE underground cables (UGC) using CYMCAP software. These factors are conductor cross-sectional area, soil thermal resistivity, cable burial depth, cable separation, sheath bonding, bedding and backfill heights and thermal conductivities, nearby parallel heat source, formation of dry zone, loss tangent and segmented conductors. Results reveal that increasing the separation distance between phases gives higher ampacity, contrary to the burial depth. The rate of conductor temperature reduction due to the increase in the bedding thermal conductivity is more pronounced than that achieved by increasing backfill thermal conductivity. Furthermore, increasing the native thermal conductivity and/or the maximum conductor temperature increases the UGC ampacity and consequently increases the induced sheath voltage. Sheath losses are significant in transmission UGC where the load currents are always high. High conductor temperature and hence degradation rate is expected for UGC carrying currents of highly fluctuating loads. UGC must be derated as they age (increasing loss tangent), or when dry zones are formed around them, or when a nearby parallel heat source. Finally, it is found that the increase in the number of conductor segments nonlinearly increases the UGC ampacity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Metwally IA (2012) The evolution of MV power cables. IEEE Potentials 31(3):20–25 Metwally IA (2012) The evolution of MV power cables. IEEE Potentials 31(3):20–25
3.
Zurück zum Zitat Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV), IEC Standard 60502-SER, Ed 1.0, 2007 Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV), IEC Standard 60502-SER, Ed 1.0, 2007
4.
Zurück zum Zitat Thue WA (2003) Electrical power cable engineering, 2nd edn. Marcel Dekker, Inc, New York Thue WA (2003) Electrical power cable engineering, 2nd edn. Marcel Dekker, Inc, New York
5.
Zurück zum Zitat Hvidsten S, Kvande S, Ryen A, Larsen P (2009) Severe degradation of the conductor screen of service and laboratory aged MV XLPE insulated cables. IEEE Trans Dielectr Electr Insul 16(1):155–161CrossRef Hvidsten S, Kvande S, Ryen A, Larsen P (2009) Severe degradation of the conductor screen of service and laboratory aged MV XLPE insulated cables. IEEE Trans Dielectr Electr Insul 16(1):155–161CrossRef
6.
Zurück zum Zitat Dorison E, Anders GJ, Lesur F (2010) Ampacity calculations for deeply installed cables. IEEE Trans Power Deliv 25(2):524–533CrossRef Dorison E, Anders GJ, Lesur F (2010) Ampacity calculations for deeply installed cables. IEEE Trans Power Deliv 25(2):524–533CrossRef
7.
Zurück zum Zitat Liu SB (2010) Calculation of the steady-state and transient temperature rises of round cable bundles. IEEE Trans Power Deliv 25(3):1229–1235 Liu SB (2010) Calculation of the steady-state and transient temperature rises of round cable bundles. IEEE Trans Power Deliv 25(3):1229–1235
8.
Zurück zum Zitat Hanna MA, Chikhani AY, Salama MMA (1998) Thermal analysis of power cable systems in a trench in multi-layered soil. IEEE Trans Power Deliv 13(2):304–309CrossRef Hanna MA, Chikhani AY, Salama MMA (1998) Thermal analysis of power cable systems in a trench in multi-layered soil. IEEE Trans Power Deliv 13(2):304–309CrossRef
10.
Zurück zum Zitat Neher JH, McGrath MH (1957) The calculation of the temperature rise and load capability of cable systems power apparatus and systems. Part III. Trans Am Inst Electr Eng 76(3):752–764 Neher JH, McGrath MH (1957) The calculation of the temperature rise and load capability of cable systems power apparatus and systems. Part III. Trans Am Inst Electr Eng 76(3):752–764
11.
Zurück zum Zitat Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) - Part 2: Cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV), IEC Standard \(\#\) IEC 60502–2 ed 2.0, 8 March 2005 Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) - Part 2: Cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV), IEC Standard \(\#\) IEC 60502–2 ed 2.0, 8 March 2005
12.
Zurück zum Zitat Electric cables—Calculation of the current rating—Part 1–1: Current rating equations (100 % load factor) and calculation of losses—General. IEC Standard \(\#\) IEC 60287–1-1 ed 2.0, Dec. 2006 Electric cables—Calculation of the current rating—Part 1–1: Current rating equations (100 % load factor) and calculation of losses—General. IEC Standard \(\#\) IEC 60287–1-1 ed 2.0, Dec. 2006
13.
Zurück zum Zitat Anders GJ (1997) Rating of electric power cables: ampacity computations for transmission, distribution, and industrial applications. IEEE Press, McGraw Hill Anders GJ (1997) Rating of electric power cables: ampacity computations for transmission, distribution, and industrial applications. IEEE Press, McGraw Hill
16.
Zurück zum Zitat Li Y, Fa-dong P, Xiao-lin C, Yong-hong C, Li X (2008) Study on sheath circulating current of cross-linked power cables. International Conference on High Voltage Engineering and Application (ICHVE 2008), Chongqing, 9–13 Nov, pp 645–648 Li Y, Fa-dong P, Xiao-lin C, Yong-hong C, Li X (2008) Study on sheath circulating current of cross-linked power cables. International Conference on High Voltage Engineering and Application (ICHVE 2008), Chongqing, 9–13 Nov, pp 645–648
17.
Zurück zum Zitat Al-Saud MS, El-Kady MA, Findlay RD (1997) Advanced thermal field sensitivity analysis of power cables. Fifth international middle east power conference MEPCON’97, Alexandria, 4–6 Jan, pp 133–136 Al-Saud MS, El-Kady MA, Findlay RD (1997) Advanced thermal field sensitivity analysis of power cables. Fifth international middle east power conference MEPCON’97, Alexandria, 4–6 Jan, pp 133–136
18.
Zurück zum Zitat Calculation of the cyclic and emergency current rating of cables. Part 2: Cyclic rating of cables greater than 18/30 (36) kV and emergency ratings for cables of all voltages. TC/SC 20, IEC Standard 60853-2 ed1.0, 1989-09 Calculation of the cyclic and emergency current rating of cables. Part 2: Cyclic rating of cables greater than 18/30 (36) kV and emergency ratings for cables of all voltages. TC/SC 20, IEC Standard 60853-2 ed1.0, 1989-09
19.
Zurück zum Zitat Electric cables - Calculation of the current rating—Part 1–3: Current rating equations (100 % load factor) and calculation of losses—Current sharing between parallel single-core cables and calculation of circulating current losses, IEC Standard \(\#\) IEC 60287-1-3 ed1.0, 21 May 2002 Electric cables - Calculation of the current rating—Part 1–3: Current rating equations (100 % load factor) and calculation of losses—Current sharing between parallel single-core cables and calculation of circulating current losses, IEC Standard \(\#\) IEC 60287-1-3 ed1.0, 21 May 2002
20.
Zurück zum Zitat Gouda OE, El Dein AZ, Amer GM (2011) Effect of the formation of the dry zone around underground power cables on their ratings. IEEE Trans Power Deliv 26(2):972–978CrossRef Gouda OE, El Dein AZ, Amer GM (2011) Effect of the formation of the dry zone around underground power cables on their ratings. IEEE Trans Power Deliv 26(2):972–978CrossRef
Metadaten
Titel
Factors influencing ampacity and temperature of underground power cables
verfasst von
I. A. Metwally
A. H. Al-Badi
A. S. Al Farsi
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 4/2013
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-012-0271-5

Weitere Artikel der Ausgabe 4/2013

Electrical Engineering 4/2013 Zur Ausgabe

Neuer Inhalt