Skip to main content

2019 | OriginalPaper | Buchkapitel

Fast Simulation Platform for Retrofitting Measures in Residential Heating

verfasst von : Philipp Schuetz, Rossano Scoccia, Damian Gwerder, Remo Waser, David Sturzenegger, Peru Elguezabal, Beñat Arregi, Alessandro Sivieri, Marcello Aprile, Jörg Worlitschek

Erschienen in: Cold Climate HVAC 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy efficiency aware building owners are facing a massive amount of different retrofitting options. However, a quantitative assessment of the different options requires a high level of technical expertise. In this contribution, a fast and novel simulation platform for the assessment of different residential heating system configurations is presented. This platform enables dynamic simulations of the complete heating system, calculating energy/heat consumption and comfort indicators for different heating systems during a full year in less than 5 s on a recent laptop. Another key feature of the platform is the inclusion of a large variety of different heat sources (oil/gas/biomass/carbon boilers, air/brine-water or sorption heat pumps), sensible thermal heat storages, as well as building models. Shortly, this system will be the core of a platform enabling interested users to calculate the energy consumption of different retrofitting options accurately. To validate the system models, the energy consumption of the three reference buildings (single family houses with an annual heating energy demand of 15, 45 and 100 kWh/m2) as per the IEA SHC Task 44 is calculated and compared with reference simulations from established simulation frameworks. The energy consumption of these buildings matches the reference values up to 5% for a full year simulation requiring calculations times between 3.3 and 3.7 s on a recent laptop.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Pollier, L. Gynther, B Lapillonne, Energy Efficiency Trends and Policies in the Household and Tertiary Sectors (2015) K. Pollier, L. Gynther, B Lapillonne, Energy Efficiency Trends and Policies in the Household and Tertiary Sectors (2015)
2.
Zurück zum Zitat B. von Manteuffel, C. Petersdorff, K. Bettgenhäuser, T. Boermans, EU pathways to a decarbonised building sector (2016) B. von Manteuffel, C. Petersdorff, K. Bettgenhäuser, T. Boermans, EU pathways to a decarbonised building sector (2016)
3.
Zurück zum Zitat P. Byrne, J. Miriel, Y. Lénat, Modelling and simulation of a heat pump for simultaneous heating and cooling. Build. Simul. 5, 219–232 (2012)CrossRef P. Byrne, J. Miriel, Y. Lénat, Modelling and simulation of a heat pump for simultaneous heating and cooling. Build. Simul. 5, 219–232 (2012)CrossRef
4.
Zurück zum Zitat M. Elci, S. Narmsara, F. Kagerer, S. Herkel, in Simulation of Energy Conservation Measures and Its Implications on a Combined Heat and Power District Heating System: A Case Study. 13th Conference of Building Performance Simulation Association (Chambéry, 2013), pp. 104–111 M. Elci, S. Narmsara, F. Kagerer, S. Herkel, in Simulation of Energy Conservation Measures and Its Implications on a Combined Heat and Power District Heating System: A Case Study. 13th Conference of Building Performance Simulation Association (Chambéry, 2013), pp. 104–111
5.
Zurück zum Zitat E. Georges, G. Masy, C. Verhelst et al., Smart grid energy flexible buildings through the use of heat pumps in the Belgian context. Sci. Technol. Built. Environ. 21, 800–811 (2015)CrossRef E. Georges, G. Masy, C. Verhelst et al., Smart grid energy flexible buildings through the use of heat pumps in the Belgian context. Sci. Technol. Built. Environ. 21, 800–811 (2015)CrossRef
6.
Zurück zum Zitat W. Chung, Review of building energy-use performance benchmarking methodologies. Appl. Energy 88, 1470–1479 (2010)CrossRef W. Chung, Review of building energy-use performance benchmarking methodologies. Appl. Energy 88, 1470–1479 (2010)CrossRef
7.
Zurück zum Zitat M. Muratori, M.C. Roberts, R. Sioshansi et al., A highly resolved modeling technique to simulate residential power demand. Appl. Energy 107, 465–473 (2013)CrossRef M. Muratori, M.C. Roberts, R. Sioshansi et al., A highly resolved modeling technique to simulate residential power demand. Appl. Energy 107, 465–473 (2013)CrossRef
8.
Zurück zum Zitat F. Oldewurtel, A. Parisio, C.N. Jones et al., Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 45, 15–27 (2012)CrossRef F. Oldewurtel, A. Parisio, C.N. Jones et al., Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 45, 15–27 (2012)CrossRef
9.
Zurück zum Zitat C. Wemhöner, B. Hafner, K. Schwarzer, in Simulation of Solar Thermal Systems With Carnot Blockset. Proceedings Eurosun 2000 Conference, ISES (Copenhagen, Denmark, 2000). pp 1–6 C. Wemhöner, B. Hafner, K. Schwarzer, in Simulation of Solar Thermal Systems With Carnot Blockset. Proceedings Eurosun 2000 Conference, ISES (Copenhagen, Denmark, 2000). pp 1–6
10.
11.
Zurück zum Zitat H. Burmeister, B. Keller, Climate surfaces: a quantitative building-specific representation of climates. Energy Build. 28, 167–177 (1998)CrossRef H. Burmeister, B. Keller, Climate surfaces: a quantitative building-specific representation of climates. Energy Build. 28, 167–177 (1998)CrossRef
12.
Zurück zum Zitat R. Perez, P. Ineichen, R. Seals et al., Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44, 271–289 (1990)CrossRef R. Perez, P. Ineichen, R. Seals et al., Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44, 271–289 (1990)CrossRef
13.
Zurück zum Zitat 15316-4-1 CE Heating systems in buildings: Method for calculation of system energy requirements and system efficiency: Part 4-1: Space heating generation systems, combustion systems (boilers) 15316-4-1 CE Heating systems in buildings: Method for calculation of system energy requirements and system efficiency: Part 4-1: Space heating generation systems, combustion systems (boilers)
14.
Zurück zum Zitat D. Gwerder, P. Schuetz, L. Gasser et al., in Entwicklung einer optimalen Einheit aus Wärmepumpe und thermischem Energiespeicher. 21. Wärmepumpentagung BFE Forschungsprogramm. Burgdorf (2015) D. Gwerder, P. Schuetz, L. Gasser et al., in Entwicklung einer optimalen Einheit aus Wärmepumpe und thermischem Energiespeicher. 21. Wärmepumpentagung BFE Forschungsprogramm. Burgdorf (2015)
15.
Zurück zum Zitat R. Dott, J. Ruschenburg, F. Ochs et al., The Reference Framework for System Simulation of the IEA SHC Task 44/HPP Annex 38—Part B: Buildings and Space Heat Load. Tech Rep subtask C IEA SHC Task 44 (2013) R. Dott, J. Ruschenburg, F. Ochs et al., The Reference Framework for System Simulation of the IEA SHC Task 44/HPP Annex 38—Part B: Buildings and Space Heat Load. Tech Rep subtask C IEA SHC Task 44 (2013)
16.
Zurück zum Zitat M. Haller, J. Ruschenburg, F. Ochs et al., The Reference Framework of System Simulations of the IEA SHC Task 44/HPP Annex 38—Part A: General Simulation Boundary Conditions. Tech Rep subtask C IEA SHC Task 44 (2013) M. Haller, J. Ruschenburg, F. Ochs et al., The Reference Framework of System Simulations of the IEA SHC Task 44/HPP Annex 38—Part A: General Simulation Boundary Conditions. Tech Rep subtask C IEA SHC Task 44 (2013)
Metadaten
Titel
Fast Simulation Platform for Retrofitting Measures in Residential Heating
verfasst von
Philipp Schuetz
Rossano Scoccia
Damian Gwerder
Remo Waser
David Sturzenegger
Peru Elguezabal
Beñat Arregi
Alessandro Sivieri
Marcello Aprile
Jörg Worlitschek
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-00662-4_60