Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2017

02.05.2017

Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods

verfasst von: K. K. Yogesha, Amit Joshi, R. Jayaganthan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, 5052 Al alloy was processed through different rolling methods to obtain ultrafine grains and its high-cycle fatigue behavior were investigated. The solution-treated Al-Mg alloys (AA 5052) were deformed through different methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW), up to 75% thickness reduction. The deformed samples were subjected to mechanical testing such as hardness, tensile and high-cycle fatigue (HCF) test at stress control mode. The CGW samples exhibit better HCF strength when compared to other conditions. The microstructure of the tested samples was characterized by optical microscopy, SEM fractography and TEM to understand the deformation behavior of deformed Al alloy. The improvement in fatigue life of CR and CGR samples is due to effective grain refinement, subgrain formations, and high dislocation density observed in the heavily deformed samples at cryogenic condition as observed from SEM and TEM analysis. However, in case of CGW samples, formation of nanoshear bands accommodates the applied strain during cyclic loading, thereby facilitating dislocation accumulation along with subgrain formations, leading to the high fatigue life. The deformed or broken impurity phase particles found in the deformed samples along with the precipitates that were formed during warm rolling also play a prominent role in enhancing the fatigue strength. These tiny particles hindered the dislocation movement by effectively pinning it at grain boundaries, thereby improving the resistance of crack propagation under cyclic load.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Cavaliere, Fatigue Properties and Crack Behavior of Ultra-Fine and Nanocrystalline Pure Metals, Int. J. Fatigue, 2009, 31, p 1476–1489CrossRef P. Cavaliere, Fatigue Properties and Crack Behavior of Ultra-Fine and Nanocrystalline Pure Metals, Int. J. Fatigue, 2009, 31, p 1476–1489CrossRef
2.
Zurück zum Zitat N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scripta Mater., 2004, 51, p 801–806CrossRef N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scripta Mater., 2004, 51, p 801–806CrossRef
3.
Zurück zum Zitat I.F. Mohamed, S. Lee, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, and D. Terada, Aging Behavior of Al 6061 Alloy Processed by High-Pressure Torsion and Subsequent Aging, Metall. Mater. Trans. A, 2015, 46, p 2664–2673CrossRef I.F. Mohamed, S. Lee, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, and D. Terada, Aging Behavior of Al 6061 Alloy Processed by High-Pressure Torsion and Subsequent Aging, Metall. Mater. Trans. A, 2015, 46, p 2664–2673CrossRef
4.
Zurück zum Zitat A.P. Zhilyaev, K. Oh-Ishi, T.G. Langdon, and T.R. McNelley, Microstructural Evolution in Commercial Purity Aluminum During High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410, p 277–280CrossRef A.P. Zhilyaev, K. Oh-Ishi, T.G. Langdon, and T.R. McNelley, Microstructural Evolution in Commercial Purity Aluminum During High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410, p 277–280CrossRef
5.
Zurück zum Zitat B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, and R.Z. Valiev, Formation of Nanograined Structure and Decomposition of Supersaturated Solid Solution During High Pressure Torsion of Al-Zn and Al-Mg Alloys, Acta Mater., 2004, 52, p 4469–4478CrossRef B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, and R.Z. Valiev, Formation of Nanograined Structure and Decomposition of Supersaturated Solid Solution During High Pressure Torsion of Al-Zn and Al-Mg Alloys, Acta Mater., 2004, 52, p 4469–4478CrossRef
6.
Zurück zum Zitat X. Yang, J. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure–Hardness Relationship in an Al-4 wt.% Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25, p 1909–1915CrossRef X. Yang, J. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure–Hardness Relationship in an Al-4 wt.% Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25, p 1909–1915CrossRef
7.
Zurück zum Zitat C. Xu, Z. Horita, and T.G. Langdon, The Evolution of Homogeneity in an Aluminum Alloy Processed Using High-Pressure Torsion, Acta Mater., 2008, 56, p 5168–5176CrossRef C. Xu, Z. Horita, and T.G. Langdon, The Evolution of Homogeneity in an Aluminum Alloy Processed Using High-Pressure Torsion, Acta Mater., 2008, 56, p 5168–5176CrossRef
8.
Zurück zum Zitat Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52, p 4589–4599CrossRef Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52, p 4589–4599CrossRef
9.
Zurück zum Zitat S.Y. Chang, K.S. Lee, S.H. Choi, and D.H. Shin, Effect of ECAP on Microstructure and Mechanical Properties of a Commercial 6061 Al Alloy Produced by Powder Metallurgy, J. Alloys Compd., 2003, 354, p 216–220CrossRef S.Y. Chang, K.S. Lee, S.H. Choi, and D.H. Shin, Effect of ECAP on Microstructure and Mechanical Properties of a Commercial 6061 Al Alloy Produced by Powder Metallurgy, J. Alloys Compd., 2003, 354, p 216–220CrossRef
10.
Zurück zum Zitat M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, and H. Roven, J, Microstructure Evolution and Mechanical Behavior of a Binary Al-7Mg Alloy Processed by Equal-Channel Angular Pressing, Acta Mater., 2015, 84, p 42–54CrossRef M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, and H. Roven, J, Microstructure Evolution and Mechanical Behavior of a Binary Al-7Mg Alloy Processed by Equal-Channel Angular Pressing, Acta Mater., 2015, 84, p 42–54CrossRef
11.
Zurück zum Zitat L.J. Zheng, H.X. Li, M.F. Hashmi, C.Q. Chen, Y. Zhang, and M.G. Zeng, Evolution of Microstructure and Strengthening of 7050 Al Alloy by ECAP Combined with Heat-Treatment, J. Mater. Process. Technol., 2006, 171, p 100–107CrossRef L.J. Zheng, H.X. Li, M.F. Hashmi, C.Q. Chen, Y. Zhang, and M.G. Zeng, Evolution of Microstructure and Strengthening of 7050 Al Alloy by ECAP Combined with Heat-Treatment, J. Mater. Process. Technol., 2006, 171, p 100–107CrossRef
12.
Zurück zum Zitat M. Namdar and S. Jahromi, J, Influence of ECAP on the Fatigue Behavior of Age-Hardenable 2xxx Aluminum Alloy, Int. J. Miner. Metall. Mater., 2015, 22, p 285–291CrossRef M. Namdar and S. Jahromi, J, Influence of ECAP on the Fatigue Behavior of Age-Hardenable 2xxx Aluminum Alloy, Int. J. Miner. Metall. Mater., 2015, 22, p 285–291CrossRef
13.
Zurück zum Zitat P.N. Rao, D. Singh, and R. Jayaganthan, Mechanical Properties and Microstructural Evolution of Al 6061 Alloy Processed by Multidirectional Forging at Liquid Nitrogen Temperature, Mater. Des., 2014, 56, p 97–104CrossRef P.N. Rao, D. Singh, and R. Jayaganthan, Mechanical Properties and Microstructural Evolution of Al 6061 Alloy Processed by Multidirectional Forging at Liquid Nitrogen Temperature, Mater. Des., 2014, 56, p 97–104CrossRef
14.
Zurück zum Zitat R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58, p 33–39CrossRef R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58, p 33–39CrossRef
15.
Zurück zum Zitat O.S. Sitdikov, Comparative Analysis of Microstructures Formed in Highly Alloyed Aluminum Alloy During High-Temperature Equal-Channel Angular Pressing and Multidirectional Forging, Inorg. Mater. Appl. Res., 2016, 7, p 149–157CrossRef O.S. Sitdikov, Comparative Analysis of Microstructures Formed in Highly Alloyed Aluminum Alloy During High-Temperature Equal-Channel Angular Pressing and Multidirectional Forging, Inorg. Mater. Appl. Res., 2016, 7, p 149–157CrossRef
16.
Zurück zum Zitat D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha, and D. Srivastava, Tensile Properties and Microstructural Evolution of Zircaloy-4 Processed Through Rolling at Different Temperatures, Mater. Des., 2016, 103, p 40–51CrossRef D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha, and D. Srivastava, Tensile Properties and Microstructural Evolution of Zircaloy-4 Processed Through Rolling at Different Temperatures, Mater. Des., 2016, 103, p 40–51CrossRef
17.
Zurück zum Zitat A. Joshi, N. Kumar, K.K. Yogesha, R. Jayaganthan, and S.K. Nath, Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed Through Multidirectional Cryo forging, J. Mater. Eng. Perform., 2016, 25, p 1–15CrossRef A. Joshi, N. Kumar, K.K. Yogesha, R. Jayaganthan, and S.K. Nath, Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed Through Multidirectional Cryo forging, J. Mater. Eng. Perform., 2016, 25, p 1–15CrossRef
18.
Zurück zum Zitat N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344CrossRef N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344CrossRef
19.
Zurück zum Zitat M. Ruppert, M. Strebl, H.W. Höppel, and M. Göken, Mechanical Properties of Ultrafine-Grained AlZnMg (Cu)-Alloys AA7020 and AA7075 Processed by Accumulative Roll Bonding, J. Mater. Sci., 2015, 50, p 4422–4429CrossRef M. Ruppert, M. Strebl, H.W. Höppel, and M. Göken, Mechanical Properties of Ultrafine-Grained AlZnMg (Cu)-Alloys AA7020 and AA7075 Processed by Accumulative Roll Bonding, J. Mater. Sci., 2015, 50, p 4422–4429CrossRef
20.
Zurück zum Zitat H. Xie, M.P. Wang, W. Chen, and Y. Jia, Microstructure, Mechanical Properties, and Texture Evolution of Aluminum Alloy 7005 by Accumulative Roll Bonding, J. Mater. Eng. Perform., 2016, 25, p 1199–1210CrossRef H. Xie, M.P. Wang, W. Chen, and Y. Jia, Microstructure, Mechanical Properties, and Texture Evolution of Aluminum Alloy 7005 by Accumulative Roll Bonding, J. Mater. Eng. Perform., 2016, 25, p 1199–1210CrossRef
21.
Zurück zum Zitat H.W. Höppel, J. May, and M. Göken, Enhanced Strength and Ductility in Ultrafine-Grained Aluminium Produced by Accumulative Roll Bonding, Adv. Eng. Mater., 2004, 6, p 781–784CrossRef H.W. Höppel, J. May, and M. Göken, Enhanced Strength and Ductility in Ultrafine-Grained Aluminium Produced by Accumulative Roll Bonding, Adv. Eng. Mater., 2004, 6, p 781–784CrossRef
22.
Zurück zum Zitat M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry, Development of a Recovered/Recrystallized Multilayered Microstructure in Al Alloys by Accumulative Roll Bonding, Acta Mater., 2007, 55, p 5438–5448CrossRef M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry, Development of a Recovered/Recrystallized Multilayered Microstructure in Al Alloys by Accumulative Roll Bonding, Acta Mater., 2007, 55, p 5438–5448CrossRef
23.
Zurück zum Zitat J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Mater., 2001, 49, p 1497–1505CrossRef J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Mater., 2001, 49, p 1497–1505CrossRef
24.
Zurück zum Zitat V. Rajinikanth, G. Arora, N. Narasaiah, and K. Venkateswarlu, Effect of Repetitive Corrugation and Straightening on Al and Al–0.25 Sc Alloy, Mater. Lett., 2008, 62, p 301–304CrossRef V. Rajinikanth, G. Arora, N. Narasaiah, and K. Venkateswarlu, Effect of Repetitive Corrugation and Straightening on Al and Al–0.25 Sc Alloy, Mater. Lett., 2008, 62, p 301–304CrossRef
25.
Zurück zum Zitat N. Thangapandian, S.B. Prabu, and K.A. Padmanabhan, Effects of Die Profile on Grain Refinement in Al-Mg Alloy Processed by Repetitive Corrugation and Straightening, Mater. Sci. Eng. A, 2016, 649, p 229–238CrossRef N. Thangapandian, S.B. Prabu, and K.A. Padmanabhan, Effects of Die Profile on Grain Refinement in Al-Mg Alloy Processed by Repetitive Corrugation and Straightening, Mater. Sci. Eng. A, 2016, 649, p 229–238CrossRef
26.
Zurück zum Zitat A. Krishnaiah, U. Chakkingal, and H.S. Kim, Mechanical Properties of Commercially Pure Aluminium Subjected to Repetitive Bending and Straightening Process, Trans. Indian Inst. Met., 2008, 61, p 165–167CrossRef A. Krishnaiah, U. Chakkingal, and H.S. Kim, Mechanical Properties of Commercially Pure Aluminium Subjected to Repetitive Bending and Straightening Process, Trans. Indian Inst. Met., 2008, 61, p 165–167CrossRef
27.
Zurück zum Zitat P.S. Pao, H.N. Jones, S.F. Cheng, and C.R. Feng, Fatigue Crack Propagation in Ultrafine Grained Al-Mg Alloy, Int. J. Fatigue, 2005, 27, p 1164–1169CrossRef P.S. Pao, H.N. Jones, S.F. Cheng, and C.R. Feng, Fatigue Crack Propagation in Ultrafine Grained Al-Mg Alloy, Int. J. Fatigue, 2005, 27, p 1164–1169CrossRef
28.
Zurück zum Zitat A. Vinogradov, A. Washikita, K. Kitagawa, and V.I. Kopylov, Fatigue life of Fine-Grain Al-Mg-Sc Alloys Produced by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2003, 349, p 318–326CrossRef A. Vinogradov, A. Washikita, K. Kitagawa, and V.I. Kopylov, Fatigue life of Fine-Grain Al-Mg-Sc Alloys Produced by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2003, 349, p 318–326CrossRef
29.
Zurück zum Zitat A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, and M. Kawazoe, Fatigue Properties of 5056 Al-Mg Alloy Produced by Equal-Channel Angular Pressing, Nanostruct. Mater., 1999, 11, p 925–934CrossRef A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, and M. Kawazoe, Fatigue Properties of 5056 Al-Mg Alloy Produced by Equal-Channel Angular Pressing, Nanostruct. Mater., 1999, 11, p 925–934CrossRef
30.
Zurück zum Zitat V. Patlan, A. Vinogradov, K. Higashi, and K. Kitagawa, Overview of Fatigue Properties of Fine Grain 5056 Al-Mg Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2001, 300, p 171–182CrossRef V. Patlan, A. Vinogradov, K. Higashi, and K. Kitagawa, Overview of Fatigue Properties of Fine Grain 5056 Al-Mg Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2001, 300, p 171–182CrossRef
31.
Zurück zum Zitat J.H. Cha, H.H. Cho, W.H. Kim, S.I. Kwun, and D.H. Shin, The Low Cycle Fatigue Behavior of Equal-Channel Angular Pressed Al 5052 Alloy, Key Eng. Mater., 2008, 385, p 725–728CrossRef J.H. Cha, H.H. Cho, W.H. Kim, S.I. Kwun, and D.H. Shin, The Low Cycle Fatigue Behavior of Equal-Channel Angular Pressed Al 5052 Alloy, Key Eng. Mater., 2008, 385, p 725–728CrossRef
32.
Zurück zum Zitat G. Khatibi, J. Horky, B. Weiss, and M.J. Zehetbauer, High Cycle Fatigue Behaviour of Copper Deformed by High Pressure Torsion, Int. J. Fatigue, 2010, 32, p 269–278CrossRef G. Khatibi, J. Horky, B. Weiss, and M.J. Zehetbauer, High Cycle Fatigue Behaviour of Copper Deformed by High Pressure Torsion, Int. J. Fatigue, 2010, 32, p 269–278CrossRef
33.
Zurück zum Zitat S.K. Panigrahi and R. Jayaganthan, A Study on the Mechanical Properties of Cryorolled Al-Mg-Si Alloy, Mater. Sci. Eng. A, 2008, 480, p 299–305CrossRef S.K. Panigrahi and R. Jayaganthan, A Study on the Mechanical Properties of Cryorolled Al-Mg-Si Alloy, Mater. Sci. Eng. A, 2008, 480, p 299–305CrossRef
34.
Zurück zum Zitat K.K. Yogesha, N. Kumar, A. Joshi, R. Jayaganthan, and S.K. Nath, A Comparative Study on Tensile and Fracture Behavior of Al-Mg Alloy Processed Through Cryorolling and Cryo Groove Rolling, Metallogr. Microstruct. Anal., 2016, 5, p 251–263CrossRef K.K. Yogesha, N. Kumar, A. Joshi, R. Jayaganthan, and S.K. Nath, A Comparative Study on Tensile and Fracture Behavior of Al-Mg Alloy Processed Through Cryorolling and Cryo Groove Rolling, Metallogr. Microstruct. Anal., 2016, 5, p 251–263CrossRef
35.
Zurück zum Zitat S. Malekjani, P.D. Hodgson, P. Cizek, I. Sabirov, and T.B. Hilditch, Cyclic Deformation Response of UFG 2024 Al Alloy, Int. J. Fatigue, 2011, 33(5), p 700–709CrossRef S. Malekjani, P.D. Hodgson, P. Cizek, I. Sabirov, and T.B. Hilditch, Cyclic Deformation Response of UFG 2024 Al Alloy, Int. J. Fatigue, 2011, 33(5), p 700–709CrossRef
36.
Zurück zum Zitat D. Singh, P. Nageswara Rao, and R. Jayaganthan, High Cyclic Fatigue Behaviour of Ultrafine Grained Al 5083 Alloy, Mater. Sci. Technol., 2014, 30, p 1835–1842CrossRef D. Singh, P. Nageswara Rao, and R. Jayaganthan, High Cyclic Fatigue Behaviour of Ultrafine Grained Al 5083 Alloy, Mater. Sci. Technol., 2014, 30, p 1835–1842CrossRef
37.
Zurück zum Zitat U.G. Kang et al., The Improvement of Strength and Ductility in Ultra-Fine Grained 5052 Al Alloy by Cryogenic-and Warm-Rolling, J. Mater. Sci., 2010, 45, p 4739–4744CrossRef U.G. Kang et al., The Improvement of Strength and Ductility in Ultra-Fine Grained 5052 Al Alloy by Cryogenic-and Warm-Rolling, J. Mater. Sci., 2010, 45, p 4739–4744CrossRef
38.
Zurück zum Zitat Y.B. Lee, D.H. Shin, and W.J. Nam, Effect of Annealing Temperature on Tensile Behavior of 5052 Al Alloy Deformed at Cryogenic Temperature, J. Mater. Sci., 2005, 40, p 1313–1315CrossRef Y.B. Lee, D.H. Shin, and W.J. Nam, Effect of Annealing Temperature on Tensile Behavior of 5052 Al Alloy Deformed at Cryogenic Temperature, J. Mater. Sci., 2005, 40, p 1313–1315CrossRef
39.
Zurück zum Zitat P.N. Rao, D. Singh, and R. Jayaganthan, Effect of Annealing on Microstructure and Mechanical Properties of Al 6061 Alloy Processed by Cryorolling, Mater. Sci. Technol., 2013, 29, p 76–82CrossRef P.N. Rao, D. Singh, and R. Jayaganthan, Effect of Annealing on Microstructure and Mechanical Properties of Al 6061 Alloy Processed by Cryorolling, Mater. Sci. Technol., 2013, 29, p 76–82CrossRef
40.
Zurück zum Zitat S.K. Panigrahi and R. Jayaganthan, Development of Ultrafine-Grained Al 6063 Alloy by Cryorolling with the Optimized Initial Heat Treatment Conditions, Mater. Des., 2011, 32, p 2172–2180CrossRef S.K. Panigrahi and R. Jayaganthan, Development of Ultrafine-Grained Al 6063 Alloy by Cryorolling with the Optimized Initial Heat Treatment Conditions, Mater. Des., 2011, 32, p 2172–2180CrossRef
41.
Zurück zum Zitat T.S. Srivatsan, S. Anand, S. Sriram, and V.K. Vasudevan, The High-Cycle Fatigue and Fracture Behavior of Aluminum Alloy 7055, Mater. Sci. Eng. A, 2000, 281(1), p 292–304CrossRef T.S. Srivatsan, S. Anand, S. Sriram, and V.K. Vasudevan, The High-Cycle Fatigue and Fracture Behavior of Aluminum Alloy 7055, Mater. Sci. Eng. A, 2000, 281(1), p 292–304CrossRef
42.
Zurück zum Zitat C.D. Beachem, Electron Fractographic Studies of Mechanical Fracture Processes in Metals, J. Basic Eng., 1965, 87, p 299–306CrossRef C.D. Beachem, Electron Fractographic Studies of Mechanical Fracture Processes in Metals, J. Basic Eng., 1965, 87, p 299–306CrossRef
43.
Zurück zum Zitat L. Yan and J. Fan, In-Situ SEM Study of Fatigue Crack Initiation and Propagation Behavior in 2524 Aluminum Alloy, Mater. Des., 2016, 110, p 592–601CrossRef L. Yan and J. Fan, In-Situ SEM Study of Fatigue Crack Initiation and Propagation Behavior in 2524 Aluminum Alloy, Mater. Des., 2016, 110, p 592–601CrossRef
44.
Zurück zum Zitat D. Singh, P. Nageswara Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al-Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655CrossRef D. Singh, P. Nageswara Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al-Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655CrossRef
45.
Zurück zum Zitat A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of Ultra-Fine Grain Microstructures in Al-Mg Alloys by Coventional Rolling, Acta Mater., 2002, 50, p 4461–4476CrossRef A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of Ultra-Fine Grain Microstructures in Al-Mg Alloys by Coventional Rolling, Acta Mater., 2002, 50, p 4461–4476CrossRef
46.
Zurück zum Zitat D. Singh, P. Nageswara Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, p 759–769CrossRef D. Singh, P. Nageswara Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, p 759–769CrossRef
47.
Zurück zum Zitat S. Malekjani, P.D. Hodgson, N.E. Stanford, and T.B. Hilditch, Shear Bands Evolution in Ultrafine-Grained Aluminium Under Cyclic Loading, Scripta Mater., 2013, 68(10), p 821–824CrossRef S. Malekjani, P.D. Hodgson, N.E. Stanford, and T.B. Hilditch, Shear Bands Evolution in Ultrafine-Grained Aluminium Under Cyclic Loading, Scripta Mater., 2013, 68(10), p 821–824CrossRef
48.
Zurück zum Zitat U.G. Gang, S.H. Lee, and W.J. Nam, The Evolution of Microstructure and Mechanical Properties of a 5052 Aluminium Alloy by the Application of Cryogenic Rolling and Warm Rolling, Mater. Trans., 2009, 50(1), p 82–86CrossRef U.G. Gang, S.H. Lee, and W.J. Nam, The Evolution of Microstructure and Mechanical Properties of a 5052 Aluminium Alloy by the Application of Cryogenic Rolling and Warm Rolling, Mater. Trans., 2009, 50(1), p 82–86CrossRef
49.
Zurück zum Zitat W. Bo, X.H. Chen, F.S. Pan, J.J. Mao, and F.A.N.G. Yong, Effects of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of AA 5052 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25(8), p 2481–2489CrossRef W. Bo, X.H. Chen, F.S. Pan, J.J. Mao, and F.A.N.G. Yong, Effects of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of AA 5052 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25(8), p 2481–2489CrossRef
Metadaten
Titel
Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods
verfasst von
K. K. Yogesha
Amit Joshi
R. Jayaganthan
Publikationsdatum
02.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2705-8

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Engineering and Performance 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.