Skip to main content
Erschienen in: Strength of Materials 4/2018

25.10.2018

Fatigue Crack Growth in the Base Metal and Weld of the Combustion Chamber Casing of an Aircraft Gas-Turbine Engine

verfasst von: V. V. Pokrovskii, V. G. Sidyachenko, V. N. Ezhov

Erschienen in: Strength of Materials | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To substantiate the serviceability of aircraft gas turbine engines on the basis of technical condition, it is necessary to have information on the rate of crack growth in the material of engine components from the initial to critical dimensions. According to normative documents, this information is used in fixing the time limits for and amount of scheduled maintenance. The rate of fatigue crack growth in the high-temperature alloy of the combustion chamber of an aircraft gas turbine engine was studied taking into account operational (temperature) and constructional (weld, thickness of the product), factors. The experiments were performed on flat rectangular specimens with an edge and a central crack by the standard procedure at test temperatures of 500 and 600°C. The fatigue crack growth rate was studied in the base metal, weld and in the heat-affected zone at a distance of 2–3 mm from the weld. To do this, a fatigue crack was initiated from a mechanically cut notch at the appropriate site relative to the weld: in the base metal, weld and in the heat-affected zone. A linear section of a fatigue fracture diagram has been constructed, and Paris equation coefficients have been obtained. Confidence intervals are given, which illustrate the area within which the experimental results fall with a probability of 95%. A statistical treatment of experimental data in terms of the kinetics of fatigue crack growth in the heat-affected zone and in the base metal showed them to differ only slightly, whereas the rate of fatigue crack growth in the weld increases by a factor of two or three. To estimate the change in the mechanical properties of the alloy under investigation on transition from the base metal through the heat-affected zone to the weld, Rockwell tests were carried out. The results showed a small change in hardness, which indirectly accounts for the small discrepancy (within the statistical error) between the rate of crack growth in the base metal and that in the heat-affected zone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASTM E 647-00. Standard Test Method for Measurement of Fatigue Crack Growth Rates, West Conshohocken, PA (2002), pp. 595–635. ASTM E 647-00. Standard Test Method for Measurement of Fatigue Crack Growth Rates, West Conshohocken, PA (2002), pp. 595–635.
2.
Zurück zum Zitat RD 50-345-82. Methodological Instructions. Strength Design and Testing. Methods for the Mechanical Testing of Metals. Determination of Crack Resistance Characteristics (Fracture Toughness) under Cyclic Loading [in Russian], Izd. Standartov, Moscow (1983). RD 50-345-82. Methodological Instructions. Strength Design and Testing. Methods for the Mechanical Testing of Metals. Determination of Crack Resistance Characteristics (Fracture Toughness) under Cyclic Loading [in Russian], Izd. Standartov, Moscow (1983).
3.
Zurück zum Zitat V. I. Proshin and V. G. Sidorov, Metrology, Standardization and Certification. Methods for the Processing of Measurement Data [in Russian], St. Petersburg Polytechnic University, St. Petersburg (2007). V. I. Proshin and V. G. Sidorov, Metrology, Standardization and Certification. Methods for the Processing of Measurement Data [in Russian], St. Petersburg Polytechnic University, St. Petersburg (2007).
4.
Zurück zum Zitat V. S. Ivanova and V. F. Terent’ev, Nature of the Fatigue of Metals [in Russian], Metallurgiya, Moscow (1975). V. S. Ivanova and V. F. Terent’ev, Nature of the Fatigue of Metals [in Russian], Metallurgiya, Moscow (1975).
5.
Zurück zum Zitat A. H. Sherry, C. C. France, and M. R. Goldthorpe, “Compendium of T-stress solutions for two and three dimensional cracked geometries,” Fatigue Fract. Eng. Mater. Struct., 18, 141–155 (1995).CrossRef A. H. Sherry, C. C. France, and M. R. Goldthorpe, “Compendium of T-stress solutions for two and three dimensional cracked geometries,” Fatigue Fract. Eng. Mater. Struct., 18, 141–155 (1995).CrossRef
6.
Zurück zum Zitat V. N. Shlyannikov and A. P. Zakharov, “Multiaxial crack growth rate under variable T-stresses,” Eng. Fract. Mech., 123, 86–96 (2014).CrossRef V. N. Shlyannikov and A. P. Zakharov, “Multiaxial crack growth rate under variable T-stresses,” Eng. Fract. Mech., 123, 86–96 (2014).CrossRef
7.
Zurück zum Zitat H. Kitagawa, R. Yuuki, and K. Tongo, “A fracture mechanics approach to high-cycle fatigue crack growth under in-plane biaxial loads,” Fatigue Fract. Eng. Mater. Struct., 2, 195–206 (1979).CrossRef H. Kitagawa, R. Yuuki, and K. Tongo, “A fracture mechanics approach to high-cycle fatigue crack growth under in-plane biaxial loads,” Fatigue Fract. Eng. Mater. Struct., 2, 195–206 (1979).CrossRef
Metadaten
Titel
Fatigue Crack Growth in the Base Metal and Weld of the Combustion Chamber Casing of an Aircraft Gas-Turbine Engine
verfasst von
V. V. Pokrovskii
V. G. Sidyachenko
V. N. Ezhov
Publikationsdatum
25.10.2018
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 4/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-0008-4

Weitere Artikel der Ausgabe 4/2018

Strength of Materials 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.