Skip to main content
Erschienen in: Progress in Additive Manufacturing 2/2019

21.11.2018 | Review Article

FDM filaments with unique segmentation since evolution: a critical review

verfasst von: R. Anandkumar, S. Ramesh Babu

Erschienen in: Progress in Additive Manufacturing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The urge towards faster and sophisticated manufacturing is a nurturing factor of human life. Researchers envisage in developing complex products in shorter time duration. The conventional subtractive manufacturing undergoes pre-processing, processing, and post-processing stages. Additive manufacturing (AM) undergoes the same set of stages, where as raw material is added gradually to get the final product in contradiction to the subtractive manufacturing. There are many variants in AM technology, amongst that fused deposition modeling (FDM) is less sophisticated and incurs lesser manufacturing cost. The filament is the deciding factor for the final quality and cost of the product in FDM. Filament invariants have evolved slowly since the 1980s and had shown imperative growth in the last decade. Hence, the significance of filament in FDM insists to undergo a critical review on filament segmentation, growth, and its future. The absence of specific article or publication presenting a review is the prime objective of the critical review.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Berger U, Hartmann A, Schmid D (2013) Additive fertigungsverfahren, rapid prototyping, rapid tooling, rapid manufacturing. Europa Publisher, Nourey Berger U, Hartmann A, Schmid D (2013) Additive fertigungsverfahren, rapid prototyping, rapid tooling, rapid manufacturing. Europa Publisher, Nourey
2.
Zurück zum Zitat Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid prototyping with layer manufacturing (lm) technologies, state of the art and future perpectives. CIRP Ann Manuf Technol 52(2):589–609CrossRef Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid prototyping with layer manufacturing (lm) technologies, state of the art and future perpectives. CIRP Ann Manuf Technol 52(2):589–609CrossRef
3.
Zurück zum Zitat Koziora T, Kunderaa C (2017) TRANSCOM 2017: international scientific conference on sustainable, modern and safe transport, evaluation of the influence of parameters of FDM technology on the selected mechanical properties of models. Procedia Eng 192:463–468CrossRef Koziora T, Kunderaa C (2017) TRANSCOM 2017: international scientific conference on sustainable, modern and safe transport, evaluation of the influence of parameters of FDM technology on the selected mechanical properties of models. Procedia Eng 192:463–468CrossRef
4.
Zurück zum Zitat Goyanes A, Kobayashia M, Martínez-Pachecob R, Gaisforda S, Basita AW (2016) Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm 514:290–295CrossRef Goyanes A, Kobayashia M, Martínez-Pachecob R, Gaisforda S, Basita AW (2016) Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm 514:290–295CrossRef
5.
Zurück zum Zitat Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47:525–540CrossRef Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47:525–540CrossRef
6.
Zurück zum Zitat Boschetto A, Bottini L, Veniali F (2016) Integration of FDM surface quality modeling with process design. Addit Manuf 12:334–344CrossRef Boschetto A, Bottini L, Veniali F (2016) Integration of FDM surface quality modeling with process design. Addit Manuf 12:334–344CrossRef
7.
Zurück zum Zitat Lieneke T, Denzer V, Adama GAO, Zimmer D (2016) 14th CIRP conference on computer aided tolerancing (CAT), dimensional tolerances for additive manufacturing: experimental investigation for fused deposition modeling. Procedia CIRP 43:286–291CrossRef Lieneke T, Denzer V, Adama GAO, Zimmer D (2016) 14th CIRP conference on computer aided tolerancing (CAT), dimensional tolerances for additive manufacturing: experimental investigation for fused deposition modeling. Procedia CIRP 43:286–291CrossRef
8.
Zurück zum Zitat Standard terminology for additive manufacturing technologies: designation F2792–12a (2012) ASTM international, West Conshohocken, PA Standard terminology for additive manufacturing technologies: designation F2792–12a (2012) ASTM international, West Conshohocken, PA
9.
Zurück zum Zitat Chen JSS, Feng HY (2011) Contour generation for layered manufacturing with reduced part distortion. Int J Adv Manuf Technol 53:1103–1113CrossRef Chen JSS, Feng HY (2011) Contour generation for layered manufacturing with reduced part distortion. Int J Adv Manuf Technol 53:1103–1113CrossRef
10.
Zurück zum Zitat Petzold R, Zeilhofer HF, Kalender WA (1999) Rapid prototyping technology in medicine—basics and applications. Comput Med Imaging Graph 23:277–284CrossRef Petzold R, Zeilhofer HF, Kalender WA (1999) Rapid prototyping technology in medicine—basics and applications. Comput Med Imaging Graph 23:277–284CrossRef
11.
Zurück zum Zitat Yan X, Gu P (1996) A review of rapid prototyping technologies and systems. Comput Aided Des 28:307–318CrossRef Yan X, Gu P (1996) A review of rapid prototyping technologies and systems. Comput Aided Des 28:307–318CrossRef
12.
Zurück zum Zitat Shemelya C, Cedillos F, Aguilera E, Maestas E, Ramos J, Espalin D et al (2013) 3Dprinted capacitive sensors. In: Sensors IEEE, pp 1–4 Shemelya C, Cedillos F, Aguilera E, Maestas E, Ramos J, Espalin D et al (2013) 3Dprinted capacitive sensors. In: Sensors IEEE, pp 1–4
13.
Zurück zum Zitat Espalin D, Muse DW, MacDonald E, Wicker RB (2014) 3D printing multi-functionality: structures with electronics. Int J Adv Manuf Technol 72:963–978CrossRef Espalin D, Muse DW, MacDonald E, Wicker RB (2014) 3D printing multi-functionality: structures with electronics. Int J Adv Manuf Technol 72:963–978CrossRef
14.
Zurück zum Zitat Shemelya C, Banuelos-Chacon L, Melendez A, Kief C, Espalin D, Wicker R et al (2015) Multi-functional 3D printed and embedded sensors for satellite qualification structures. In: Sensors IEEE, pp 1–4 Shemelya C, Banuelos-Chacon L, Melendez A, Kief C, Espalin D, Wicker R et al (2015) Multi-functional 3D printed and embedded sensors for satellite qualification structures. In: Sensors IEEE, pp 1–4
15.
Zurück zum Zitat Ota H, Emaminejad S, Gao Y, Zhao A, Wu E, Challa S et al (2016) Application of 3D printing for smart objects with embedded electronic sensors and systems. Adv Mater Technol 1:1600013CrossRef Ota H, Emaminejad S, Gao Y, Zhao A, Wu E, Challa S et al (2016) Application of 3D printing for smart objects with embedded electronic sensors and systems. Adv Mater Technol 1:1600013CrossRef
16.
Zurück zum Zitat Wu SY, Yang C, Hsu W, Lin L (2015) 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsyst Nanoeng 1:15013CrossRef Wu SY, Yang C, Hsu W, Lin L (2015) 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsyst Nanoeng 1:15013CrossRef
17.
Zurück zum Zitat Peng H, Guimbretière F, McCann J, Hudson S (2016) A 3D printer for interactive electromagnetic devices. In: Proceedings of the 29th annual symposium on user interface software and technology, ACM, pp 553–562 Peng H, Guimbretière F, McCann J, Hudson S (2016) A 3D printer for interactive electromagnetic devices. In: Proceedings of the 29th annual symposium on user interface software and technology, ACM, pp 553–562
18.
Zurück zum Zitat Nate K, Tentzeris MM (2015) A novel 3-D printed loop antenna using flexible NinjaFlex material for wearable and IoT applications. In: Electrical performance of electronic packaging and systems (EPEPS), 2015 IEEE 24th, IEEE, pp 171–174 Nate K, Tentzeris MM (2015) A novel 3-D printed loop antenna using flexible NinjaFlex material for wearable and IoT applications. In: Electrical performance of electronic packaging and systems (EPEPS), 2015 IEEE 24th, IEEE, pp 171–174
19.
Zurück zum Zitat Yuen PK (2016) Embedding objects during 3D printing to add new functionalities. Biomicrofluidics 10:044104CrossRef Yuen PK (2016) Embedding objects during 3D printing to add new functionalities. Biomicrofluidics 10:044104CrossRef
21.
Zurück zum Zitat Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96(2016):106–114CrossRef Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96(2016):106–114CrossRef
22.
Zurück zum Zitat Zuluaga DC, Menges A (2015) 3D printed hygroscopic programmable material systems. In: MRS proceedings. Cambridge Univ Press, pp mrss15-2134303 Zuluaga DC, Menges A (2015) 3D printed hygroscopic programmable material systems. In: MRS proceedings. Cambridge Univ Press, pp mrss15-2134303
23.
Zurück zum Zitat Schmitz M, Khalilbeigi M, Balwierz M, Lissermann R, Mühlhäuser M, Steimle J (2015) Capricate: a fabrication pipeline to design and 3D print capacitive touch sensors for interactive objects. In: Proceedings of the 28th annual ACM symposium on user interface software and technology, ACM, pp 253–258 Schmitz M, Khalilbeigi M, Balwierz M, Lissermann R, Mühlhäuser M, Steimle J (2015) Capricate: a fabrication pipeline to design and 3D print capacitive touch sensors for interactive objects. In: Proceedings of the 28th annual ACM symposium on user interface software and technology, ACM, pp 253–258
24.
Zurück zum Zitat Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotubenanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114CrossRef Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotubenanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114CrossRef
25.
Zurück zum Zitat Leigh S (2016) Polymer composites for 3D printing of functional sensors and transducers. In: Sensors IEEE, pp 1–3 Leigh S (2016) Polymer composites for 3D printing of functional sensors and transducers. In: Sensors IEEE, pp 1–3
26.
Zurück zum Zitat Rymansaib Z, Iravani P, Emslie E, Medvidović-Kosanović M, Sak-Bosnar M, Verdejo R et al (2016) All-polystyrene 3D-printed electrochemical device with embedded carbon nano fiber-graphite-polystyrene composite conductor. Electroanalysis 28(7):1517–1523CrossRef Rymansaib Z, Iravani P, Emslie E, Medvidović-Kosanović M, Sak-Bosnar M, Verdejo R et al (2016) All-polystyrene 3D-printed electrochemical device with embedded carbon nano fiber-graphite-polystyrene composite conductor. Electroanalysis 28(7):1517–1523CrossRef
28.
Zurück zum Zitat Brooke R (2014) TCT magazine, 3D printing materials report predicts 20% yearly growth to 2018. Accessed 12 Feb 2014 Brooke R (2014) TCT magazine, 3D printing materials report predicts 20% yearly growth to 2018. Accessed 12 Feb 2014
29.
Zurück zum Zitat Acccreate Technology (2014) TCT magazine, Weistek exhibits 3D printers and filaments at CES. Accessed 2 Jan 2014 Acccreate Technology (2014) TCT magazine, Weistek exhibits 3D printers and filaments at CES. Accessed 2 Jan 2014
30.
Zurück zum Zitat Griffiths L (2014) TCT magazine, Igus introduces world’s first tribo-filament for 3D printing. Accessed 15 Oct 2014 Griffiths L (2014) TCT magazine, Igus introduces world’s first tribo-filament for 3D printing. Accessed 15 Oct 2014
31.
Zurück zum Zitat Griffiths L (2014) TCT magazine, Verbatim Unveils PRIMALLOY 3D printing filament. Accessed 10 Sept 2014 Griffiths L (2014) TCT magazine, Verbatim Unveils PRIMALLOY 3D printing filament. Accessed 10 Sept 2014
32.
Zurück zum Zitat Griffiths L (2015) TCT magazine, German RepRap releases new performance PLA. Accessed 19 Jan 2015 Griffiths L (2015) TCT magazine, German RepRap releases new performance PLA. Accessed 19 Jan 2015
33.
Zurück zum Zitat Griffiths L (2015) TCT magazine, taulman3D launches new high strength. In: PLA 3D printing filament with enhanced colour clarity. Accessed 5 May 2015 Griffiths L (2015) TCT magazine, taulman3D launches new high strength. In: PLA 3D printing filament with enhanced colour clarity. Accessed 5 May 2015
35.
Zurück zum Zitat Griffiths L (2016) TCT magazine, Algix 3D launches new filament to replace ABS. Accessed 21 Mar 2016 Griffiths L (2016) TCT magazine, Algix 3D launches new filament to replace ABS. Accessed 21 Mar 2016
36.
Zurück zum Zitat SABIC (2017) TCT magazine, SABIC unveils new portfolio of high-performance filament grades for FDM 3D printing. Accessed 10 May 2017 SABIC (2017) TCT magazine, SABIC unveils new portfolio of high-performance filament grades for FDM 3D printing. Accessed 10 May 2017
37.
Zurück zum Zitat Davies S (2017) TCT magazine, Verbatim unveils new polypropylene 3D printing material. Accessed 4 Apr 2017 Davies S (2017) TCT magazine, Verbatim unveils new polypropylene 3D printing material. Accessed 4 Apr 2017
38.
Zurück zum Zitat Davies S (2017) TCT magazine, Floreon 3D begins search for partners to bring patented PLA filament technology to market. Accessed 5 Sept 2017 Davies S (2017) TCT magazine, Floreon 3D begins search for partners to bring patented PLA filament technology to market. Accessed 5 Sept 2017
39.
Zurück zum Zitat Furomoto S (2017) TCT magazine, Verbatim introduces new PRIMALLOY BLACK high-performance 3D printing filament. Accessed 12 Sept 2017 Furomoto S (2017) TCT magazine, Verbatim introduces new PRIMALLOY BLACK high-performance 3D printing filament. Accessed 12 Sept 2017
40.
Zurück zum Zitat Coex LLC (2017) TCT magazine, DuPont high performance 3D printing materials available in EMEA through German RepRap. Accessed 5 Oct 2017 Coex LLC (2017) TCT magazine, DuPont high performance 3D printing materials available in EMEA through German RepRap. Accessed 5 Oct 2017
41.
Zurück zum Zitat Davies S (2017) TCT magazine, Fillamentum releases PLA Extrafill Vertigo Galaxy FDM 3D printing filament. Accessed 6 Oct 2017 Davies S (2017) TCT magazine, Fillamentum releases PLA Extrafill Vertigo Galaxy FDM 3D printing filament. Accessed 6 Oct 2017
45.
Zurück zum Zitat O’Connor D (2013) TCT magazine, 3D printing with seaweed. Accessed 3 Dec 2013 O’Connor D (2013) TCT magazine, 3D printing with seaweed. Accessed 3 Dec 2013
46.
Zurück zum Zitat O’Connor D (2015) TCT magazine, MakerBot to launch four new filaments including metal, wood and limestone. Accessed 6 Jan 2015 O’Connor D (2015) TCT magazine, MakerBot to launch four new filaments including metal, wood and limestone. Accessed 6 Jan 2015
47.
Zurück zum Zitat Griffiths L (2015) TCT magazine, 3Dom USA launches coffee-based bio-material for eco-friendly 3D printing. Accessed 24 Aug 2015 Griffiths L (2015) TCT magazine, 3Dom USA launches coffee-based bio-material for eco-friendly 3D printing. Accessed 24 Aug 2015
48.
Zurück zum Zitat Griffiths L (2015) TCT magazine, WillowFlex 3D printing filament to lead organic material evolution. Accessed 19 Aug 2015 Griffiths L (2015) TCT magazine, WillowFlex 3D printing filament to lead organic material evolution. Accessed 19 Aug 2015
49.
Zurück zum Zitat Facilan (2017) TCT magazine, 3D4Makers and Perstorp partner to launch Facilan FDM 3D printing filament portfolio. Accessed 9 November 2017 Facilan (2017) TCT magazine, 3D4Makers and Perstorp partner to launch Facilan FDM 3D printing filament portfolio. Accessed 9 November 2017
50.
Zurück zum Zitat O’Connor D (2014) TCT magazine, 10 new materials you can now print with. Accessed 29 April 2014 O’Connor D (2014) TCT magazine, 10 new materials you can now print with. Accessed 29 April 2014
51.
Zurück zum Zitat O’Connor D (2015) TCT magazine, graphene 3D Lab to launch water-soluble 3D printing filament. Accessed 29 Apr 2015 O’Connor D (2015) TCT magazine, graphene 3D Lab to launch water-soluble 3D printing filament. Accessed 29 Apr 2015
52.
Zurück zum Zitat O’Connor D (2015) TCT magazine, the virtuous circle of Algae-infused PLA by Algix and 3D fuel. Accessed 21 May 2015 O’Connor D (2015) TCT magazine, the virtuous circle of Algae-infused PLA by Algix and 3D fuel. Accessed 21 May 2015
53.
Zurück zum Zitat O’Connor D (2015) TCT magazine, Dutch startup to bring aerospace grade 3D printing materials to the desktop. Accessed 29 Jul 2015 O’Connor D (2015) TCT magazine, Dutch startup to bring aerospace grade 3D printing materials to the desktop. Accessed 29 Jul 2015
54.
Zurück zum Zitat Dudal A (2015) TCT magazine, taking 3D printing filament to the next level. Accessed 18 Dec 2015 Dudal A (2015) TCT magazine, taking 3D printing filament to the next level. Accessed 18 Dec 2015
56.
Zurück zum Zitat Stolyarov D (2016) TCT magazine, graphene 3D Lab launch magnetic filament. Accessed 19 Jan 2016 Stolyarov D (2016) TCT magazine, graphene 3D Lab launch magnetic filament. Accessed 19 Jan 2016
58.
Zurück zum Zitat DomFuel’s (2016) TCT magazine, 3D printing filament manufacturers join forces on new company 3DomFuel. Accessed 23 Mar 2016 DomFuel’s (2016) TCT magazine, 3D printing filament manufacturers join forces on new company 3DomFuel. Accessed 23 Mar 2016
59.
Zurück zum Zitat Davies S (2017) TCT magazine, colorFabb launches nGen_LUX 3D printing filament featuring diffuse reflection. Accessed 22 Sept 2017 Davies S (2017) TCT magazine, colorFabb launches nGen_LUX 3D printing filament featuring diffuse reflection. Accessed 22 Sept 2017
60.
Zurück zum Zitat FiberLab (2017) TCT magazine, FIBERLAB releases flexible and temperature fluctuation resistant Fiberflex 40D 3D printing filament. Accessed 14 Jun 2017 FiberLab (2017) TCT magazine, FIBERLAB releases flexible and temperature fluctuation resistant Fiberflex 40D 3D printing filament. Accessed 14 Jun 2017
62.
Zurück zum Zitat O’Connor D (2017) TCT magazine, WATCH: metal part from an FDM start—polymaker at 3D printing Tokyo 2017. Accessed 17 Feb 2017 O’Connor D (2017) TCT magazine, WATCH: metal part from an FDM start—polymaker at 3D printing Tokyo 2017. Accessed 17 Feb 2017
63.
66.
Zurück zum Zitat O’Connor D (2013) TCT magazine, filabot filament. Accessed 11 Jun 2013 O’Connor D (2013) TCT magazine, filabot filament. Accessed 11 Jun 2013
67.
Zurück zum Zitat Hoyt R (2015) TCT magazine, NASA and tethers unlimited developing positrusion system for recycling 3D printing filament in space. Accessed 17 Apr 2015 Hoyt R (2015) TCT magazine, NASA and tethers unlimited developing positrusion system for recycling 3D printing filament in space. Accessed 17 Apr 2015
68.
Zurück zum Zitat Scott (2015) TCT magazine, fila-cycle launches largest collection of recycled 3D printing filaments. Accessed 5 Nov 2015 Scott (2015) TCT magazine, fila-cycle launches largest collection of recycled 3D printing filaments. Accessed 5 Nov 2015
69.
Zurück zum Zitat Davies S (2016) TCT magazine, Tasmanian teacher finds way to turn unwanted plastic rope into 3D printing filament. Accessed 15 Nov 2016 Davies S (2016) TCT magazine, Tasmanian teacher finds way to turn unwanted plastic rope into 3D printing filament. Accessed 15 Nov 2016
70.
Zurück zum Zitat Davies S (2016) TCT magazine, recycling plastic waste for high performance 3D printing filament the aim for ALT LLC. Accessed 8 Dec 2016 Davies S (2016) TCT magazine, recycling plastic waste for high performance 3D printing filament the aim for ALT LLC. Accessed 8 Dec 2016
71.
Zurück zum Zitat O’Connor D (2014) TCT magazine, wave goodbye to filament spools. Accessed 19 May 2014 O’Connor D (2014) TCT magazine, wave goodbye to filament spools. Accessed 19 May 2014
72.
Zurück zum Zitat Esun (2014) TCT magazine, Esun launches cleaning filament. Accessed 16 Jun 2014 Esun (2014) TCT magazine, Esun launches cleaning filament. Accessed 16 Jun 2014
73.
Zurück zum Zitat Davies S (2016) TCT magazine, accessory that monitors and cleans filament in 3D printers launched by Canadian designers. Accessed 28 Nov 2016 Davies S (2016) TCT magazine, accessory that monitors and cleans filament in 3D printers launched by Canadian designers. Accessed 28 Nov 2016
74.
Zurück zum Zitat Davies S (2017) TCT magazine, Airwolf 3D debuting hydrofill water-soluble support material at CES. Accessed 5 Jan 2017 Davies S (2017) TCT magazine, Airwolf 3D debuting hydrofill water-soluble support material at CES. Accessed 5 Jan 2017
75.
Zurück zum Zitat Verbatim (2017) TCT magazine, Verbatim launches new high-performance water-soluble support material. Accessed 8 Jun 2017 Verbatim (2017) TCT magazine, Verbatim launches new high-performance water-soluble support material. Accessed 8 Jun 2017
76.
Zurück zum Zitat Woodside P (2012) Aurora’s additive manufacturing wing showcased in NAMII announcement. In: Aurora flight sciences, August 17, 2012 Woodside P (2012) Aurora’s additive manufacturing wing showcased in NAMII announcement. In: Aurora flight sciences, August 17, 2012
82.
Zurück zum Zitat Shofner M, Lozano K, Rodríguez Macías F, Barrera E (2003) Nanofiber reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090CrossRef Shofner M, Lozano K, Rodríguez Macías F, Barrera E (2003) Nanofiber reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090CrossRef
83.
Zurück zum Zitat Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 80:369–378CrossRef Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 80:369–378CrossRef
84.
Zurück zum Zitat Love LJ et al (2014) The importance of carbon fiber to polymer additive manufacturing. J Mater Res 29:1893–1898CrossRef Love LJ et al (2014) The importance of carbon fiber to polymer additive manufacturing. J Mater Res 29:1893–1898CrossRef
85.
Zurück zum Zitat Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301:125–130CrossRef Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301:125–130CrossRef
86.
Zurück zum Zitat Gray R, Baird D, Bøhn J (1998) Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym Compos 19:383–394CrossRef Gray R, Baird D, Bøhn J (1998) Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym Compos 19:383–394CrossRef
89.
91.
Zurück zum Zitat Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271CrossRef Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271CrossRef
92.
Zurück zum Zitat Kitson PJ, Rosnes MH, Sans V et al (2012) Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12:3267–3271CrossRef Kitson PJ, Rosnes MH, Sans V et al (2012) Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12:3267–3271CrossRef
93.
Zurück zum Zitat Paydar OH, Paredes CN, Hwang Y et al (2014) Characterization of 3D-printed microfluidic chip interconnects with integrated o-ring. Sens Actuators A Phys 205:199–203CrossRef Paydar OH, Paredes CN, Hwang Y et al (2014) Characterization of 3D-printed microfluidic chip interconnects with integrated o-ring. Sens Actuators A Phys 205:199–203CrossRef
94.
Zurück zum Zitat Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14:424–430CrossRef Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14:424–430CrossRef
95.
Zurück zum Zitat Gross BC, Erkal JL, Lockwood SY et al (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253CrossRef Gross BC, Erkal JL, Lockwood SY et al (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253CrossRef
96.
Zurück zum Zitat Erkal JL, Selimovic A, Gross BC et al (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–2032CrossRef Erkal JL, Selimovic A, Gross BC et al (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–2032CrossRef
97.
Zurück zum Zitat Lee KG, Park KJ, Seok S et al (2014) 3D printed modules for integrated microfluidic devices. RSC Adv 4:32876–32880CrossRef Lee KG, Park KJ, Seok S et al (2014) 3D printed modules for integrated microfluidic devices. RSC Adv 4:32876–32880CrossRef
102.
Zurück zum Zitat Feng LY (2014) Study on the status quo and problems of 3D printed buildings in China. Glob J Hum Soc Sci H Interdiscip 14(5):1–8 Feng LY (2014) Study on the status quo and problems of 3D printed buildings in China. Glob J Hum Soc Sci H Interdiscip 14(5):1–8
104.
Zurück zum Zitat Oberti I, Plantamura F (2015) Is 3D printed house sustainable? Politecnico di Milano, Dept. Architecture, Built Environment and Construction Engineering (ABC)CISBAT 2015—September 9–11, 2015—Lausanne, Switzerland Oberti I, Plantamura F (2015) Is 3D printed house sustainable? Politecnico di Milano, Dept. Architecture, Built Environment and Construction Engineering (ABC)CISBAT 2015—September 9–11, 2015—Lausanne, Switzerland
110.
Zurück zum Zitat Zein I, Humacher DW, Tan KC, Teoh SH (2001) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185CrossRef Zein I, Humacher DW, Tan KC, Teoh SH (2001) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185CrossRef
111.
Zurück zum Zitat Okolo B (2016) TCT magazine, Indmatec PEEK material undergoing qualification tests for medical 3D printing. Accessed 15 Jan 2016 Okolo B (2016) TCT magazine, Indmatec PEEK material undergoing qualification tests for medical 3D printing. Accessed 15 Jan 2016
121.
Zurück zum Zitat Comb JW et al (2003) Patent application number—WO2003089702, “High-precision modeling filament”. Accessed 30 Oct 2003 Comb JW et al (2003) Patent application number—WO2003089702, “High-precision modeling filament”. Accessed 30 Oct 2003
122.
Zurück zum Zitat Pridöhl M et al (2014) Patent application number—WO2014072148, “Use and production of coated filaments for extrusion-based 3d printing processes. Accessed 15 May 2014 Pridöhl M et al (2014) Patent application number—WO2014072148, “Use and production of coated filaments for extrusion-based 3d printing processes. Accessed 15 May 2014
123.
Zurück zum Zitat Qiao L et al (2015) Patent application number—CN104742273, “Fused deposition modeling method of heat-conduction material. Accessed 01 Jul 2015 Qiao L et al (2015) Patent application number—CN104742273, “Fused deposition modeling method of heat-conduction material. Accessed 01 Jul 2015
124.
Zurück zum Zitat Yu J (2015) Patent application number—CN204431743, “FDM (fused deposition modeling)-based 3D printer capable of realizing continuous filament composition. Accessed 01 Jul 2015 Yu J (2015) Patent application number—CN204431743, “FDM (fused deposition modeling)-based 3D printer capable of realizing continuous filament composition. Accessed 01 Jul 2015
125.
Zurück zum Zitat You SH et al (2015) Patent application number—KR1020150042666, “Filament case”. Accessed 21 Apr 2015 You SH et al (2015) Patent application number—KR1020150042666, “Filament case”. Accessed 21 Apr 2015
126.
Zurück zum Zitat Bracha A et al (2015) Patent application number—WO2015059603, “Detachable filament guide and nozzle module for 3d printers”. Accessed 30 Apr 2015 Bracha A et al (2015) Patent application number—WO2015059603, “Detachable filament guide and nozzle module for 3d printers”. Accessed 30 Apr 2015
127.
Zurück zum Zitat You SH et al (2015) Patent application number—KR1020150051321, “multi-stage case for stacking and supplying three or more materials (filaments) of fused deposition modeling (fdm) or fused filament fabrication (fff)-type 3d printer”. Accessed 13 May 2015 You SH et al (2015) Patent application number—KR1020150051321, “multi-stage case for stacking and supplying three or more materials (filaments) of fused deposition modeling (fdm) or fused filament fabrication (fff)-type 3d printer”. Accessed 13 May 2015
128.
Zurück zum Zitat Priedel M et al (2015) Patent application number—CN104781063, “use and production of coated filaments for extrusion-based 3D printing processes”. Accessed 15 Jul 2015 Priedel M et al (2015) Patent application number—CN104781063, “use and production of coated filaments for extrusion-based 3D printing processes”. Accessed 15 Jul 2015
129.
Zurück zum Zitat Cho YS, Young S et al (2015) Patent application number—KR1020150102796, “non-contact type fused deposition modeling device and FDM head unit. Accessed 08 Sept 2015 Cho YS, Young S et al (2015) Patent application number—KR1020150102796, “non-contact type fused deposition modeling device and FDM head unit. Accessed 08 Sept 2015
130.
Zurück zum Zitat Pridöhl M et al (2015) Patent application number—EP2917025, “use and production of coated filaments for extrusion-based 3d printing processes. Accessed 16 Sept 2015 Pridöhl M et al (2015) Patent application number—EP2917025, “use and production of coated filaments for extrusion-based 3d printing processes. Accessed 16 Sept 2015
131.
Zurück zum Zitat Molina R, Sergio I et al (2015) Patent application number—WO2015173439, “method for producing starting materials for additive manufacturing. Accessed 19 Nov 2015 Molina R, Sergio I et al (2015) Patent application number—WO2015173439, “method for producing starting materials for additive manufacturing. Accessed 19 Nov 2015
132.
Zurück zum Zitat Yasusi K (2015) Patent application number—US20150367571, “3D printing method that enables arraying horizontal filaments without support. Accessed 24 Dec 2015 Yasusi K (2015) Patent application number—US20150367571, “3D printing method that enables arraying horizontal filaments without support. Accessed 24 Dec 2015
133.
Zurück zum Zitat Da Silva MMA (2016) Patent application number—EP2985134, “process and apparatus to colour a part manufactured by 3d printing. Accessed 17 Feb 2016 Da Silva MMA (2016) Patent application number—EP2985134, “process and apparatus to colour a part manufactured by 3d printing. Accessed 17 Feb 2016
134.
Zurück zum Zitat Hirofumi H et al (2016) Patent application number—US20160129644, “apparatus for modeling three-dimensional object and method for modeling three-dimensional object. Accessed 12 May 2016 Hirofumi H et al (2016) Patent application number—US20160129644, “apparatus for modeling three-dimensional object and method for modeling three-dimensional object. Accessed 12 May 2016
135.
Zurück zum Zitat Park JS et al (2016) Patent application number—KR1020160059302, “filament resin composition for fdm-3d printing, filament including same for fdm-3d printing, and fdm-3d printing molded product produced by using. Accessed 26 May 2016 Park JS et al (2016) Patent application number—KR1020160059302, “filament resin composition for fdm-3d printing, filament including same for fdm-3d printing, and fdm-3d printing molded product produced by using. Accessed 26 May 2016
136.
Zurück zum Zitat Bracha A, Eran G-O (2016) Patent application number—US20170072613, “detachable filament guide and nozzle module for 3D printers. Accessed 29 Sept 2016 Bracha A, Eran G-O (2016) Patent application number—US20170072613, “detachable filament guide and nozzle module for 3D printers. Accessed 29 Sept 2016
137.
Zurück zum Zitat Salice P et al (2017) Patent application number—WO2017005730, “use of polymer compositions for the production of filaments for fused deposition modelling. Accessed 12 Jan 2017 Salice P et al (2017) Patent application number—WO2017005730, “use of polymer compositions for the production of filaments for fused deposition modelling. Accessed 12 Jan 2017
138.
Zurück zum Zitat Hsu K (2017) Patent application number—US20170072633, “systems and methods for laser preheating in connection with fused deposition modeling. Accessed 16 Mar 2017 Hsu K (2017) Patent application number—US20170072633, “systems and methods for laser preheating in connection with fused deposition modeling. Accessed 16 Mar 2017
139.
Zurück zum Zitat Basit A et al Patent application number—WO2017134418, “oral dosage products and processes. Accessed 10 Aug 2017 Basit A et al Patent application number—WO2017134418, “oral dosage products and processes. Accessed 10 Aug 2017
140.
Zurück zum Zitat Hikmet R et al (2017) Patent application number—WO2017207514, “filaments for fused deposition modeling including an electronic component”. Accessed 07 Dec 2017 Hikmet R et al (2017) Patent application number—WO2017207514, “filaments for fused deposition modeling including an electronic component”. Accessed 07 Dec 2017
141.
Zurück zum Zitat Wesselink T et al (2017) Patent application number—WO2017212037, “fused deposition modeling filament production apparatus”. Accessed 14 Dec 2017 Wesselink T et al (2017) Patent application number—WO2017212037, “fused deposition modeling filament production apparatus”. Accessed 14 Dec 2017
142.
Zurück zum Zitat Boyce G (2016) TCT magazine, Haydale Composite Solutions to launch Graphene Enhanced PLA for 3D printing. Accessed 11 Aug 2016 Boyce G (2016) TCT magazine, Haydale Composite Solutions to launch Graphene Enhanced PLA for 3D printing. Accessed 11 Aug 2016
Metadaten
Titel
FDM filaments with unique segmentation since evolution: a critical review
verfasst von
R. Anandkumar
S. Ramesh Babu
Publikationsdatum
21.11.2018
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 2/2019
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-018-0069-8

Weitere Artikel der Ausgabe 2/2019

Progress in Additive Manufacturing 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.