Skip to main content
Erschienen in: Innovative Infrastructure Solutions 2/2021

01.06.2021 | Technical paper

Feasibility study of utilisation of ferrochrome slag as fine aggregate and rice husk ash as cement replacement for developing sustainable concrete

verfasst von: Satyajit Das, Rakesh Kumar Patra, Bibhuti Bhusan Mukharjee

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Utilisation of ferrochrome slag as partial substitution of the fine aggregates and incorporation of rice husk ash (RHA) in place of cement has been carried out in this study to generate a sustainable concrete. For this, workability, compressive strength (CS), split tensile strength (STS), flexural strength (FS), rebound number (RN), ultrasonic pulse velocity (UPV), water absorption (WA), density and volume of voids (VV) of 12 numbers of concrete mixes made with 0%, 10%, and 20% ferrochrome slag fine aggregates (FSA) and 0%, 10%, 15% and 20% RHA have been investigated. The outcomes of this investigation depicts that all the mixes designed in this study incorporating (FSFA) and RHA has satisfied the workability requirements of concrete to be used for normal construction work. Furthermore, a substantial reduction in CS has been noted in the early days of the mixes made with higher quantity of RHA and FSFA; however, improvement in strength parameters has been seen in later days. The results of STS, FS, RN and UPV of mixes follow a similar trend to the CS for all mixes examined in the current investigation. Overall, the outcomes of this study conclude that the concrete characteristics considered for of this work are not significantly influenced with the inclusion of FSFA in place of natural sand. However, the reduction in concrete behaviour has been detected with the use of higher RHA (%). Further, the present study recommends for the utilisation of 10%–15% RHA and 10% FSFA in concrete for various applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tiwari A, Singh S, Nagar R (2016) Feasibility assessment for partial replacement of fine aggregate to attain cleaner production perspective in concrete: a review. J Clean Prod 135:490–507CrossRef Tiwari A, Singh S, Nagar R (2016) Feasibility assessment for partial replacement of fine aggregate to attain cleaner production perspective in concrete: a review. J Clean Prod 135:490–507CrossRef
2.
Zurück zum Zitat Patra RK, Mukharjee BB (2017) Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag—a review. AdvConcrConstr 4:283–303 Patra RK, Mukharjee BB (2017) Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag—a review. AdvConcrConstr 4:283–303
3.
Zurück zum Zitat Prusty JK, Patro SK, Basarkar SS (2016) Concrete using agro-waste as fine aggregate for sustainable built environment—a review. Int J Sustain Built Environ 5:312–333CrossRef Prusty JK, Patro SK, Basarkar SS (2016) Concrete using agro-waste as fine aggregate for sustainable built environment—a review. Int J Sustain Built Environ 5:312–333CrossRef
4.
Zurück zum Zitat Singh N, Mithulraj M, Arya S (2018) Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: a review. ResourConservRecycl 138:257–271 Singh N, Mithulraj M, Arya S (2018) Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: a review. ResourConservRecycl 138:257–271
5.
Zurück zum Zitat Ghannam S, Najm H, Vasconez R (2016) Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustain Mater Technol 9:1–9 Ghannam S, Najm H, Vasconez R (2016) Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustain Mater Technol 9:1–9
6.
Zurück zum Zitat Dash MK, Patro SK, Rath AK (2016) Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete—a review. Int J Sustain Built Environ 5:484–516CrossRef Dash MK, Patro SK, Rath AK (2016) Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete—a review. Int J Sustain Built Environ 5:484–516CrossRef
7.
Zurück zum Zitat Albayati A, Wang Y, Wang Y, Haynes J (2018) A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates. Sustain Mater Technol 18:e00081 Albayati A, Wang Y, Wang Y, Haynes J (2018) A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates. Sustain Mater Technol 18:e00081
8.
Zurück zum Zitat Shaikh FUA, Hosan A (2019) Effect of nano silica on compressive strength and microstructures of high volume blast furnace slag and high volume blast furnace slag-fly ash blended pastes. Sustain Mater Technol 20:e00111 Shaikh FUA, Hosan A (2019) Effect of nano silica on compressive strength and microstructures of high volume blast furnace slag and high volume blast furnace slag-fly ash blended pastes. Sustain Mater Technol 20:e00111
9.
Zurück zum Zitat Elibol C, Sengul O (2016) Effects of activator properties and ferrochrome slag aggregates on the properties of alkali-activated blast furnace slag mortars. Arab J SciEng 41:1561–1571CrossRef Elibol C, Sengul O (2016) Effects of activator properties and ferrochrome slag aggregates on the properties of alkali-activated blast furnace slag mortars. Arab J SciEng 41:1561–1571CrossRef
10.
Zurück zum Zitat Özcan A, Karakoç MB (2019) The resistance of blast furnace slag- and ferrochrome slag-based geopolymer concrete against acid attack. Int J CivEng 17:1571–1583CrossRef Özcan A, Karakoç MB (2019) The resistance of blast furnace slag- and ferrochrome slag-based geopolymer concrete against acid attack. Int J CivEng 17:1571–1583CrossRef
11.
Zurück zum Zitat Gutt W, Nixon PJ (1979) Use of waste materials in the construction industry. MatériauxConstr 12:255–306 Gutt W, Nixon PJ (1979) Use of waste materials in the construction industry. MatériauxConstr 12:255–306
14.
Zurück zum Zitat Zelić J (2005) Properties of concrete pavements prepared with ferrochromium slag as concrete aggregate. CemConcr Res 35:2340–2349CrossRef Zelić J (2005) Properties of concrete pavements prepared with ferrochromium slag as concrete aggregate. CemConcr Res 35:2340–2349CrossRef
15.
Zurück zum Zitat Prusty JK, Patro SK, Mohanty T (2018) Structural behaviour of reinforced concrete beams made with ferrochrome slag as coarse aggregate. KSCE J CivEng 22:696–707CrossRef Prusty JK, Patro SK, Mohanty T (2018) Structural behaviour of reinforced concrete beams made with ferrochrome slag as coarse aggregate. KSCE J CivEng 22:696–707CrossRef
16.
Zurück zum Zitat Panda CR, Mishra KK, Panda KC, Nayak BBD, Nayak BBD (2013) Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Constr Build Mater 49:262–271CrossRef Panda CR, Mishra KK, Panda KC, Nayak BBD, Nayak BBD (2013) Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Constr Build Mater 49:262–271CrossRef
17.
Zurück zum Zitat Acharya PK, Patro SK (2016) Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing. Waste Manag Res 34:764–774CrossRef Acharya PK, Patro SK (2016) Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing. Waste Manag Res 34:764–774CrossRef
18.
Zurück zum Zitat Sathwik SR, Sanjith J, Sudhakar GN (2016) Development of high strength concrete using ferrochrome slag aggregate as replacement to coarse aggregate. Am J Eng Res 5:2320–2847 Sathwik SR, Sanjith J, Sudhakar GN (2016) Development of high strength concrete using ferrochrome slag aggregate as replacement to coarse aggregate. Am J Eng Res 5:2320–2847
19.
Zurück zum Zitat Dash MK, Patro SK (2018) Effects of water cooled ferrochrome slag as fine aggregate on the properties of concrete. Constr Build Mater 177:457–466CrossRef Dash MK, Patro SK (2018) Effects of water cooled ferrochrome slag as fine aggregate on the properties of concrete. Constr Build Mater 177:457–466CrossRef
20.
Zurück zum Zitat Karakoç MB, Türkmen I, Maraş MM, Kantarci F, Demirboʇa R, UʇurToprak M (2014) Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater 72:283–292CrossRef Karakoç MB, Türkmen I, Maraş MM, Kantarci F, Demirboʇa R, UʇurToprak M (2014) Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater 72:283–292CrossRef
21.
Zurück zum Zitat Karakoç MB, Türkmen I, Maraş MM, Kantarci F, Demirboʇa R (2016) Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int 42:1254–1260CrossRef Karakoç MB, Türkmen I, Maraş MM, Kantarci F, Demirboʇa R (2016) Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int 42:1254–1260CrossRef
22.
Zurück zum Zitat Yaragal SC, Chethan Kumar B, Jitin C (2020) Durability studies on ferrochrome slag as coarse aggregate in sustainable alkali activated slag/fly ash based concretes. Sustain Mater Technol 23:e00137 Yaragal SC, Chethan Kumar B, Jitin C (2020) Durability studies on ferrochrome slag as coarse aggregate in sustainable alkali activated slag/fly ash based concretes. Sustain Mater Technol 23:e00137
23.
Zurück zum Zitat Thomas BS (2018) Green concrete partially comprised of rice husk ash as a supplementary cementitious material—a comprehensive review. Renew Sustain Energy Rev 82:3913–3923CrossRef Thomas BS (2018) Green concrete partially comprised of rice husk ash as a supplementary cementitious material—a comprehensive review. Renew Sustain Energy Rev 82:3913–3923CrossRef
24.
Zurück zum Zitat Khan R, Jabbar A, Ahmad I, Khan W, Khan AN, Mirza J (2012) Reduction in environmental problems using rice-husk ash in concrete. Constr Build Mater 30:360–365CrossRef Khan R, Jabbar A, Ahmad I, Khan W, Khan AN, Mirza J (2012) Reduction in environmental problems using rice-husk ash in concrete. Constr Build Mater 30:360–365CrossRef
25.
Zurück zum Zitat Antiohos SK, Papadakis VG, Tsimas S (2014) Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness. CemConcr Res 61–62:20–27CrossRef Antiohos SK, Papadakis VG, Tsimas S (2014) Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness. CemConcr Res 61–62:20–27CrossRef
26.
Zurück zum Zitat Fapohunda C, Akinbile B, Shittu A (2017) Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement—a review. Int J Sustain Built Environ 6:675–692CrossRef Fapohunda C, Akinbile B, Shittu A (2017) Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement—a review. Int J Sustain Built Environ 6:675–692CrossRef
27.
Zurück zum Zitat Jaya RP, Bakar BHA, Johari MAM, Ibrahim MHW (2011) Strength and permeability properties of concrete containing rice husk ash with different grinding time. Cent Eur J Eng 1:103–112 Jaya RP, Bakar BHA, Johari MAM, Ibrahim MHW (2011) Strength and permeability properties of concrete containing rice husk ash with different grinding time. Cent Eur J Eng 1:103–112
28.
Zurück zum Zitat Ponmalar V, Abraham RA (2015) Study on effect of natural and ground rice-husk ash concrete. KSCE J CivEng 19:1560–1565CrossRef Ponmalar V, Abraham RA (2015) Study on effect of natural and ground rice-husk ash concrete. KSCE J CivEng 19:1560–1565CrossRef
29.
Zurück zum Zitat Fadele O, Otieno M (2019) Sustainable use of supplementary cementitious materials from agricultural wastes—a review. Sustain Constr Mater Technol 1:1–7CrossRef Fadele O, Otieno M (2019) Sustainable use of supplementary cementitious materials from agricultural wastes—a review. Sustain Constr Mater Technol 1:1–7CrossRef
30.
Zurück zum Zitat Celik F, Canakci H (2015) An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr Build Mater 91:187–194CrossRef Celik F, Canakci H (2015) An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Constr Build Mater 91:187–194CrossRef
31.
Zurück zum Zitat Salas A, Delvasto S, de Gutierrez RM, Lange D (2009) Comparison of two processes for treating rice husk ash for use in high performance concrete. CemConcr Res 39:773–778CrossRef Salas A, Delvasto S, de Gutierrez RM, Lange D (2009) Comparison of two processes for treating rice husk ash for use in high performance concrete. CemConcr Res 39:773–778CrossRef
32.
Zurück zum Zitat Madandoust R, Ranjbar MM, Moghadam HA, Mousavi SY (2011) Mechanical properties and durability assessment of rice husk ash concrete. BiosystEng 110:144–152 Madandoust R, Ranjbar MM, Moghadam HA, Mousavi SY (2011) Mechanical properties and durability assessment of rice husk ash concrete. BiosystEng 110:144–152
33.
Zurück zum Zitat Gastaldini ALG, Isaia GC, Gomes NS, Sperb JEK (2007) Chloride penetration and carbonation in concrete with rice husk ash and chemical activators. CemConcr Compos 29:176–180CrossRef Gastaldini ALG, Isaia GC, Gomes NS, Sperb JEK (2007) Chloride penetration and carbonation in concrete with rice husk ash and chemical activators. CemConcr Compos 29:176–180CrossRef
34.
Zurück zum Zitat Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22:1675–1683CrossRef Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22:1675–1683CrossRef
35.
Zurück zum Zitat Saraswathy V, Song HW (2007) Corrosion performance of rice husk ash blended concrete. Constr Build Mater 21:1779–1784CrossRef Saraswathy V, Song HW (2007) Corrosion performance of rice husk ash blended concrete. Constr Build Mater 21:1779–1784CrossRef
36.
Zurück zum Zitat Padhi RS, Patra RK, Mukharjee BB, Dey T (2018) Influence of incorporation of rice husk ash and coarse recycled concrete aggregates on properties of concrete. Constr Build Mater 173:289–297CrossRef Padhi RS, Patra RK, Mukharjee BB, Dey T (2018) Influence of incorporation of rice husk ash and coarse recycled concrete aggregates on properties of concrete. Constr Build Mater 173:289–297CrossRef
37.
Zurück zum Zitat Chao-Lung H, Le A-T, Chun-Tsun C (2011) Effect of rice husk ash on the strength and durability characteristics of concrete. Constr Build Mater 25:3768–3772CrossRef Chao-Lung H, Le A-T, Chun-Tsun C (2011) Effect of rice husk ash on the strength and durability characteristics of concrete. Constr Build Mater 25:3768–3772CrossRef
38.
Zurück zum Zitat Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, Cao HT (2007) Sulfate resistance of blended cements containing fly ash and rice husk ash. Constr Build Mater 21:1356–1361CrossRef Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, Cao HT (2007) Sulfate resistance of blended cements containing fly ash and rice husk ash. Constr Build Mater 21:1356–1361CrossRef
39.
Zurück zum Zitat IS: 383 (2016) Coarse and fine aggregate for concrete—specification (third revision). Bur. Indian Stand., Dehli IS: 383 (2016) Coarse and fine aggregate for concrete—specification (third revision). Bur. Indian Stand., Dehli
40.
Zurück zum Zitat IS 2386 (Part I): 1963 (1963) Methods of test for aggregates for concrete: part I particle size and shape. Bur. Indian Stand., Dehli IS 2386 (Part I): 1963 (1963) Methods of test for aggregates for concrete: part I particle size and shape. Bur. Indian Stand., Dehli
41.
Zurück zum Zitat IS 2386 (Part III): 1963 (1963) Methods of test for aggregates for concrete: part III specific gravity, density, voids, absorption and buckling. Bur. Indian Stand., Dehli IS 2386 (Part III): 1963 (1963) Methods of test for aggregates for concrete: part III specific gravity, density, voids, absorption and buckling. Bur. Indian Stand., Dehli
42.
Zurück zum Zitat IS:2386 (Part IV): 1963 (1963) Methods of test for aggregates for concrete part IV mechanical properties. Bur. Indian Stand., Dehli IS:2386 (Part IV): 1963 (1963) Methods of test for aggregates for concrete part IV mechanical properties. Bur. Indian Stand., Dehli
43.
Zurück zum Zitat IS 4031 (Part 2): 1999 (1999) Methods of physical tests for hydraulic cement part 2 determination of fineness by blaine air permeability method. Bur. Indian Stand., Dehli IS 4031 (Part 2): 1999 (1999) Methods of physical tests for hydraulic cement part 2 determination of fineness by blaine air permeability method. Bur. Indian Stand., Dehli
44.
Zurück zum Zitat IS 4031 (Part 4): 1988 (1988) Methods of physical tests for hydraulic cement: part 4 determination of consistency of standard cement paste. Bur. Indian Stand., Dehli IS 4031 (Part 4): 1988 (1988) Methods of physical tests for hydraulic cement: part 4 determination of consistency of standard cement paste. Bur. Indian Stand., Dehli
45.
Zurück zum Zitat IS 4031 (Part 5): 1988 (1988) Methods of physical tests for hydraulic cement part 5 determination of initial and final setting times. Bur. Indian Stand., Dehli IS 4031 (Part 5): 1988 (1988) Methods of physical tests for hydraulic cement part 5 determination of initial and final setting times. Bur. Indian Stand., Dehli
46.
Zurück zum Zitat IS 4031 (Part 6) : 1988 (1988) Methods of physical tests for hydraulic cement: part 6 determination of compressive strength of hydraulic cement other than Masonary cement. Bur. Indian Stand., Dehli IS 4031 (Part 6) : 1988 (1988) Methods of physical tests for hydraulic cement: part 6 determination of compressive strength of hydraulic cement other than Masonary cement. Bur. Indian Stand., Dehli
47.
Zurück zum Zitat IS 4031 (Part 11): 1988 (1988) Methods of physical tests for hydraulic cement: part 11 determination of density. Bur. Indian Stand., Dehli IS 4031 (Part 11): 1988 (1988) Methods of physical tests for hydraulic cement: part 11 determination of density. Bur. Indian Stand., Dehli
48.
Zurück zum Zitat IS 10262: 2019 (2019) Concrete mix proportioning—guidelines. Bur. Indian Stand., Dehli IS 10262: 2019 (2019) Concrete mix proportioning—guidelines. Bur. Indian Stand., Dehli
49.
Zurück zum Zitat IS 7320: 1974 (1974) Specification for concrete slump test apparatus. Bur. Indian Stand., Dehli IS 7320: 1974 (1974) Specification for concrete slump test apparatus. Bur. Indian Stand., Dehli
50.
Zurück zum Zitat IS 10500: 2012 (2012) Drinking water—specification. Bur. Indian Stand., Dehli IS 10500: 2012 (2012) Drinking water—specification. Bur. Indian Stand., Dehli
51.
Zurück zum Zitat IS 516: 1959 (1959) Methods of tests for strength of concrete. Bur. Indian Stand., Dehli IS 516: 1959 (1959) Methods of tests for strength of concrete. Bur. Indian Stand., Dehli
52.
Zurück zum Zitat IS 5816: 1999 (1999) Splitting tensile strength of concrete—method of test. Bur. Indian Stand., Dehli IS 5816: 1999 (1999) Splitting tensile strength of concrete—method of test. Bur. Indian Stand., Dehli
53.
Zurück zum Zitat ASTM C642-06 (2006) Standard test method for density, absorption, and voids in hardened concrete. Am. Soc. Test. Mater., West Conshohocken ASTM C642-06 (2006) Standard test method for density, absorption, and voids in hardened concrete. Am. Soc. Test. Mater., West Conshohocken
54.
Zurück zum Zitat IS 13311 (Part1): 1992 (1992) Non-destructive testing of concrete—methods of test part 1 ultrasonic pulse velocity. Bur. Indian Stand., Dehli IS 13311 (Part1): 1992 (1992) Non-destructive testing of concrete—methods of test part 1 ultrasonic pulse velocity. Bur. Indian Stand., Dehli
55.
Zurück zum Zitat IS 13311 (PART 2): 1992 (1992) Non-destructive testing of concrete—methods of test. Bur. Indian Stand., Dehli IS 13311 (PART 2): 1992 (1992) Non-destructive testing of concrete—methods of test. Bur. Indian Stand., Dehli
56.
Zurück zum Zitat Kou S-CCC, Poon C-SSS (2008) Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. Mag Concr Res 60:57–64CrossRef Kou S-CCC, Poon C-SSS (2008) Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. Mag Concr Res 60:57–64CrossRef
57.
Zurück zum Zitat American Concrete Institute (2011) ACI Committee 318: building code requirements for structural concrete. American Concrete Institute (2011) ACI Committee 318: building code requirements for structural concrete.
58.
Zurück zum Zitat C.E.-I. du Beton (1993) CEB-FIP model code 1990. Bull. d’Information C.E.-I. du Beton (1993) CEB-FIP model code 1990. Bull. d’Information
59.
Zurück zum Zitat IS 456 : 2000 (2000) Plain and reinforced concrete—code of practice. Bur. Indian Stand., Dehli IS 456 : 2000 (2000) Plain and reinforced concrete—code of practice. Bur. Indian Stand., Dehli
60.
Zurück zum Zitat EHE (1998) Spanish code for structural concrete EHE. Real Decreto 2661/1998, Madrid; [inSpanish] 704 EHE (1998) Spanish code for structural concrete EHE. Real Decreto 2661/1998, Madrid; [inSpanish] 704
61.
Zurück zum Zitat GB: 50010-2002. Chinese standard (2002) Code for design of concrete structures. China Build. Press, Beijing (In Chinese) GB: 50010-2002. Chinese standard (2002) Code for design of concrete structures. China Build. Press, Beijing (In Chinese)
62.
Zurück zum Zitat NBR 6118 (2003) Design of concrete structures—procedure. Brazilian association Tech. Stand., Riode Janeiro NBR 6118 (2003) Design of concrete structures—procedure. Brazilian association Tech. Stand., Riode Janeiro
63.
Zurück zum Zitat Hueste MBD, Chompreda P, Trejo D, Cline DBH, Keating PB (2004) Mechanical properties of high-strength concrete for prestressed members. ACI Struct J 101:457–465 Hueste MBD, Chompreda P, Trejo D, Cline DBH, Keating PB (2004) Mechanical properties of high-strength concrete for prestressed members. ACI Struct J 101:457–465
64.
Zurück zum Zitat Xiao J, Li J, Zhang C (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. CemConcr Res 35:1187–1194CrossRef Xiao J, Li J, Zhang C (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. CemConcr Res 35:1187–1194CrossRef
Metadaten
Titel
Feasibility study of utilisation of ferrochrome slag as fine aggregate and rice husk ash as cement replacement for developing sustainable concrete
verfasst von
Satyajit Das
Rakesh Kumar Patra
Bibhuti Bhusan Mukharjee
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 2/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-021-00461-9

Weitere Artikel der Ausgabe 2/2021

Innovative Infrastructure Solutions 2/2021 Zur Ausgabe