Skip to main content
Erschienen in: Innovative Infrastructure Solutions 2/2021

01.06.2021 | Technical paper

Numerical modeling of liquefaction in deep saturated sands

verfasst von: Priyanka Sharma, V. A. Sawant, M. L. Sharma

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The seismic hazard is relatively higher in Northern India due to the presence of the Himalayas encompassing many regional features like Main Boundary Thrust (MBT), Main Central Thrust (MCT) and Himalayan Frontal Thrust (HFT). Implicitly, estimation of liquefaction potential becomes of paramount interest due to the presence of deep soils in this region. Indo-Gangetic basin is composed of thick alluvium deposits where thickness of sand layer may extend up to 30 to 40 m. In the present study, a fully coupled finite element analysis is incorporated for modeling liquefaction phenomena for soil domain up to 30 m depth subjected to cyclic ground excitation of 0.2 g ground acceleration. Moreover, a parametric study is carried out to explore the liquefaction behavior on saturated sand layer of variable thickness. The ratio (Hliq/Hsand) is increasing with depth (0.5, 0.8, 0.833) highlighting the effect of drainage path.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRef Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRef
2.
Zurück zum Zitat Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191CrossRef Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191CrossRef
3.
Zurück zum Zitat Byrne PM, Park SS, Beaty M, Sharp M, Gonzalez L, Abdoun T (2004) Numerical modeling of liquefaction and comparison with centrifuge tests. Can Geotech J 41(2):193–211CrossRef Byrne PM, Park SS, Beaty M, Sharp M, Gonzalez L, Abdoun T (2004) Numerical modeling of liquefaction and comparison with centrifuge tests. Can Geotech J 41(2):193–211CrossRef
4.
Zurück zum Zitat Castro G (1975) Liquefaction and cyclic mobility of saturated sands. J Geotech Engg ASCE 101(GT6):551–569 Castro G (1975) Liquefaction and cyclic mobility of saturated sands. J Geotech Engg ASCE 101(GT6):551–569
5.
Zurück zum Zitat Deresiewicz H (1960) The effect of boundaries on wave propagation in a liquid-filled porous solid: I. Reflection of plane waves at a free plane boundary (non-dissipative case). Bull Seismol Soc Am 50(4):599–607 Deresiewicz H (1960) The effect of boundaries on wave propagation in a liquid-filled porous solid: I. Reflection of plane waves at a free plane boundary (non-dissipative case). Bull Seismol Soc Am 50(4):599–607
6.
Zurück zum Zitat Deresiewicz H, Rice JT (1962) The effect of boundaries on wave propagation in a liquid-filled porous solid: III. Reflection of plane waves at a free plane boundary (general case). Bull Seismol Soc Am 52(3):595–625 Deresiewicz H, Rice JT (1962) The effect of boundaries on wave propagation in a liquid-filled porous solid: III. Reflection of plane waves at a free plane boundary (general case). Bull Seismol Soc Am 52(3):595–625
7.
Zurück zum Zitat Derski W (1978) Equations of motion for a fluid-saturated porous solid. Bull Acad Pol Sci Ser Technol 26(1):11–16 Derski W (1978) Equations of motion for a fluid-saturated porous solid. Bull Acad Pol Sci Ser Technol 26(1):11–16
8.
Zurück zum Zitat Dewoolkar MM, Chan AH, Ko HY, Pak RY (2009) Finite element simulations of seismic effects on retaining walls with liquefiable backfills. Int J Numer Anal Methods Geomech 33(6):791–816CrossRef Dewoolkar MM, Chan AH, Ko HY, Pak RY (2009) Finite element simulations of seismic effects on retaining walls with liquefiable backfills. Int J Numer Anal Methods Geomech 33(6):791–816CrossRef
9.
Zurück zum Zitat Halpern MR, Christiano P (1986) Steady-state harmonic response of a rigid plate bearing on a liquid-saturated poroelastic halfspace. Earthq Eng Struct Dyn 14(3):439–454CrossRef Halpern MR, Christiano P (1986) Steady-state harmonic response of a rigid plate bearing on a liquid-saturated poroelastic halfspace. Earthq Eng Struct Dyn 14(3):439–454CrossRef
10.
Zurück zum Zitat Katona MC, Zienkiewicz OC (1985) A unified set of single step algorithms part 3: the beta-m method, a generalization of the Newmark scheme. Int J Numer Methods Eng 21(7):1345–1359CrossRef Katona MC, Zienkiewicz OC (1985) A unified set of single step algorithms part 3: the beta-m method, a generalization of the Newmark scheme. Int J Numer Methods Eng 21(7):1345–1359CrossRef
11.
Zurück zum Zitat Kramer SL (1996) Geotechnical earthquake engineering. Pearson Education, New Delhi Kramer SL (1996) Geotechnical earthquake engineering. Pearson Education, New Delhi
12.
Zurück zum Zitat Kumar A, Kumari S (2019) Numerical modeling of shallow foundation on liquefiable soil under sinusoidal loading. Geotech Geol Eng 37:517–532CrossRef Kumar A, Kumari S (2019) Numerical modeling of shallow foundation on liquefiable soil under sinusoidal loading. Geotech Geol Eng 37:517–532CrossRef
13.
Zurück zum Zitat Kumar SS, Dey A, Krishna AM (2018) Response of saturated cohesionless soil subjected to irregular seismic excitations. Nat Hazards 93(1):509–529CrossRef Kumar SS, Dey A, Krishna AM (2018) Response of saturated cohesionless soil subjected to irregular seismic excitations. Nat Hazards 93(1):509–529CrossRef
14.
Zurück zum Zitat Kumar SS, Krishna AM, Dey A (2017) Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dyn Earthq Eng 99:157–167CrossRef Kumar SS, Krishna AM, Dey A (2017) Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dyn Earthq Eng 99:157–167CrossRef
15.
Zurück zum Zitat Madabhushi SP, Zeng X (1998) Seismic response of gravity quay walls. II: numerical modeling. J Geotech Geoenviron Eng 124(5):418–427CrossRef Madabhushi SP, Zeng X (1998) Seismic response of gravity quay walls. II: numerical modeling. J Geotech Geoenviron Eng 124(5):418–427CrossRef
16.
Zurück zum Zitat Nova R, Wood DM (1982) A constitutive model for soil under monotonic and cyclic loading. In: Pande GN, Ziekiewicz OC (eds) Soil mechanics-transient and cyclic loading. Wiley, Chichester, pp 343–373 Nova R, Wood DM (1982) A constitutive model for soil under monotonic and cyclic loading. In: Pande GN, Ziekiewicz OC (eds) Soil mechanics-transient and cyclic loading. Wiley, Chichester, pp 343–373
17.
Zurück zum Zitat Oka F, Yashima A, Shibata T, Kato M, Uzuoka R (1994) FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model. Appl Sci Res 52(3):209–245CrossRef Oka F, Yashima A, Shibata T, Kato M, Uzuoka R (1994) FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model. Appl Sci Res 52(3):209–245CrossRef
18.
Zurück zum Zitat Pastor M, Zienkiewicz OC (1986) A generalized plasticity, hierarchical model for sand under monotonic and cyclic loading. Int Symp Numer Models Geomech 2:131–150 Pastor M, Zienkiewicz OC (1986) A generalized plasticity, hierarchical model for sand under monotonic and cyclic loading. Int Symp Numer Models Geomech 2:131–150
19.
Zurück zum Zitat Pastor M, Zienkiewicz OC, Leung KH (1985) Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands. Int J Number Anal Methods Geomech 9(5):477–498CrossRef Pastor M, Zienkiewicz OC, Leung KH (1985) Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands. Int J Number Anal Methods Geomech 9(5):477–498CrossRef
20.
Zurück zum Zitat Popescu R, Prevost JH (1993) Centrifuge validation of a numerical model for dynamic soil liquefaction. Soil Dyn Earthq Eng 12(2):73–90CrossRef Popescu R, Prevost JH (1993) Centrifuge validation of a numerical model for dynamic soil liquefaction. Soil Dyn Earthq Eng 12(2):73–90CrossRef
21.
Zurück zum Zitat Sadeghian S, Manouchehr LN (2012) Using state parameter to improve numerical prediction of a generalised plasticity constitutive model. J Comput Geosci 51:255–268CrossRef Sadeghian S, Manouchehr LN (2012) Using state parameter to improve numerical prediction of a generalised plasticity constitutive model. J Comput Geosci 51:255–268CrossRef
22.
Zurück zum Zitat Seed B (1979) Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J Geotech Geoenviron Eng 105:201–255 Seed B (1979) Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J Geotech Geoenviron Eng 105:201–255
23.
Zurück zum Zitat Seed B, Lee KL (1966) Liquefaction of saturated sands during cyclic loading. J Soil Mech Found 92:105–134CrossRef Seed B, Lee KL (1966) Liquefaction of saturated sands during cyclic loading. J Soil Mech Found 92:105–134CrossRef
24.
Zurück zum Zitat Taiebat M, Dafalias YF, Peek R (2010) A destructuration theory and its application to SANICLAY model. Int J Numer Anal Methods Geomech 34(10):1009–1040CrossRef Taiebat M, Dafalias YF, Peek R (2010) A destructuration theory and its application to SANICLAY model. Int J Numer Anal Methods Geomech 34(10):1009–1040CrossRef
25.
Zurück zum Zitat Zienkiewicz OC, Mroz Z (1984) Generalized plasticity formulation and applications to geomechanics. Mech Eng Mater 44(3):655–680 Zienkiewicz OC, Mroz Z (1984) Generalized plasticity formulation and applications to geomechanics. Mech Eng Mater 44(3):655–680
26.
Zurück zum Zitat Zienkiewicz OC, Paul DK, Chan AH (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26(5):1039–1055CrossRef Zienkiewicz OC, Paul DK, Chan AH (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26(5):1039–1055CrossRef
Metadaten
Titel
Numerical modeling of liquefaction in deep saturated sands
verfasst von
Priyanka Sharma
V. A. Sawant
M. L. Sharma
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 2/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-020-00429-1

Weitere Artikel der Ausgabe 2/2021

Innovative Infrastructure Solutions 2/2021 Zur Ausgabe