Skip to main content
Erschienen in: Innovative Infrastructure Solutions 2/2021

01.06.2021 | Technical paper

Improving thermal and mechanical properties of light weight aggregate concrete using inorganic phase changing material, expanded clay aggregate, alccofine1203 and manufacturing sand

verfasst von: Prathik Kulkarni, A. Muthadhi

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work focuses on enhancing the thermal properties of Light Weight Aggregate Concrete (ECAC) using Expanded Clay Aggregate (ECA) as a carrier for inorganic Phase Change Material (PCM) (Hydrated salt-24 (HS24) with melting point 24 °C) for M30 grade concrete. As PCM incorporation in concrete reduces mechanical properties which can be improve by addition of alccofine1203 which is ultrafine slag developed by Ambuja cement Pvt. Ltd and manufactured in India. Alccofine1203 was used as a partial replacement (10% and 20%) of cement, and Manufacturing sand (M-sand) was completely replaced with fine aggregate. ECA was immersed in liquid PCM at 3 different temperatures (40 °C, 50 °C and 60 °C) for 24 h, to determine the maximum absorption capacity of ECA, and these arregates were patially replaced (10% and 20%) with coarse aggregate. After immersion process now, these aggregates are again immersed in cement slurry for next 2hrs to avoid leakage of PCM from ECA. Leakage of PCM-ECA aggregates was carried using diffusion oozoning circle test. When coating of cement slury was applied on PCM-ECA material, leakage was reduced by 40% for all the mixes.Total 7 mixes were prepared with 175 specimens including reference mix. Different tests were conducted to evaluate its mechanical, thermal, durability and leakage properties of ECAC. As the percentage of PCM-ECA was increased from 10 to 20% its compressive and flexural strength decreased but when the same amount of PCM-ECA was incorporated with combination of alccofine1203 (10% and 20%), strength was increased by 11%. Thermal conductivity for 20% PCM-ECA gave the lowest value of all the mixes, and the percentage decrease was 28.31%. All the mix had low or moderate value for its rapid chloride permeability test (Durability test) which is a good sign of indication. In the leakage test, when 20% PCM-ECA was incorporated, 4% Leakage was observed when without coating PCM-ECA was incorporated, but it was reduced to 1.5% when cement slurry coating was applied on it.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer, Berlin, p 2008CrossRef Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer, Berlin, p 2008CrossRef
3.
Zurück zum Zitat Carbonari A, De Grassi M, Di Pema C, Principi P (2006) Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls. Energy Build 35(5):472–483CrossRef Carbonari A, De Grassi M, Di Pema C, Principi P (2006) Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls. Energy Build 35(5):472–483CrossRef
4.
Zurück zum Zitat Hunger M, Entrop AG, Mandilaras I, Brouwers HH, Founti M (2009) The behaviour of self-compacting concrete containing micro-encapsulated phase change materials. Cement Concr Compos 31:731–743CrossRef Hunger M, Entrop AG, Mandilaras I, Brouwers HH, Founti M (2009) The behaviour of self-compacting concrete containing micro-encapsulated phase change materials. Cement Concr Compos 31:731–743CrossRef
5.
Zurück zum Zitat Hawes D, Feldman D, Banu D (1993) Latent heat storage in building materials. Energy Build 20(1):77–86CrossRef Hawes D, Feldman D, Banu D (1993) Latent heat storage in building materials. Energy Build 20(1):77–86CrossRef
8.
Zurück zum Zitat Soares N, Costa JJ, Gasper AR, Santos P (2013) Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build 59:82–103CrossRef Soares N, Costa JJ, Gasper AR, Santos P (2013) Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build 59:82–103CrossRef
9.
Zurück zum Zitat Baetens R, Jelle BP, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build 42:1361–1368CrossRef Baetens R, Jelle BP, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build 42:1361–1368CrossRef
10.
Zurück zum Zitat Sakulich AR, Bentz DP (2012) Incorporation of phase change materials into cementitious systems via fine lightweight aggregate. Constr Build Mater 35:483–490CrossRef Sakulich AR, Bentz DP (2012) Incorporation of phase change materials into cementitious systems via fine lightweight aggregate. Constr Build Mater 35:483–490CrossRef
11.
Zurück zum Zitat Kulkarni P, Muthadhi A (2020) Improving thermal and mechanical property of lightweight concrete using N-butyl stearate/expanded clay aggregate with alccofine1203. Int J Eng Trans A 33:1842–1851 Kulkarni P, Muthadhi A (2020) Improving thermal and mechanical property of lightweight concrete using N-butyl stearate/expanded clay aggregate with alccofine1203. Int J Eng Trans A 33:1842–1851
12.
Zurück zum Zitat Zhang C, Chen Y, Wu L, Shi M (2011) Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures. Energy Build 43(12):3514–3520CrossRef Zhang C, Chen Y, Wu L, Shi M (2011) Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures. Energy Build 43(12):3514–3520CrossRef
13.
Zurück zum Zitat Sukontasukkul P, Uthaichotirat P, Sangpet T, Sisomphon K, Newlands M, Siripanichgorn A, Chindaprasirt P (2019) Thermal properties of lightweight concrete incorporating high contents of phase change materials. Constr Build Mater 207(2019):431–439CrossRef Sukontasukkul P, Uthaichotirat P, Sangpet T, Sisomphon K, Newlands M, Siripanichgorn A, Chindaprasirt P (2019) Thermal properties of lightweight concrete incorporating high contents of phase change materials. Constr Build Mater 207(2019):431–439CrossRef
14.
Zurück zum Zitat Rashad AM (2018) Lightweight expanded clay aggregate as a building material—an overview. Constr Build Mater 170(2018):757–775CrossRef Rashad AM (2018) Lightweight expanded clay aggregate as a building material—an overview. Constr Build Mater 170(2018):757–775CrossRef
15.
Zurück zum Zitat Nepomuceno MCS, Silva PD (2014) Experimental evaluation of cement mortars with PCM incorporated via lightweight expanded clay aggregate. Constr Build Mater 63(2014):89–96CrossRef Nepomuceno MCS, Silva PD (2014) Experimental evaluation of cement mortars with PCM incorporated via lightweight expanded clay aggregate. Constr Build Mater 63(2014):89–96CrossRef
16.
Zurück zum Zitat Mathur M, Mathur A (2018) Performance of concrete by partial replacement of alccofine-1203. Int J Eng Res Technol (IJERT) 6(11). ISSN: 2278-0181 Mathur M, Mathur A (2018) Performance of concrete by partial replacement of alccofine-1203. Int J Eng Res Technol (IJERT) 6(11). ISSN: 2278-0181
18.
Zurück zum Zitat Ansari US, Chaudhri IM, Ghuge NP, Phatangre RR (2015) High-performance concrete with partial replacement of cement by alccofine and fly ash. Indian Res Trans 5(2):19–23 Ansari US, Chaudhri IM, Ghuge NP, Phatangre RR (2015) High-performance concrete with partial replacement of cement by alccofine and fly ash. Indian Res Trans 5(2):19–23
19.
Zurück zum Zitat Gupta AK (2014) Experimental study of strength relationship of concrete cube and concrete cylinder using ultrafine slag alccofine. Int J Sci Eng Res 5(5) ISSN:2259-5518 Gupta AK (2014) Experimental study of strength relationship of concrete cube and concrete cylinder using ultrafine slag alccofine. Int J Sci Eng Res 5(5) ISSN:2259-5518
20.
Zurück zum Zitat Patel YH, Patel PJ, Patel HS (2013) Study on durability of high-performance concrete with alccofine and fly ash. Int J Adv Eng Res Stud IJAERS 2(3):154–157 Patel YH, Patel PJ, Patel HS (2013) Study on durability of high-performance concrete with alccofine and fly ash. Int J Adv Eng Res Stud IJAERS 2(3):154–157
Metadaten
Titel
Improving thermal and mechanical properties of light weight aggregate concrete using inorganic phase changing material, expanded clay aggregate, alccofine1203 and manufacturing sand
verfasst von
Prathik Kulkarni
A. Muthadhi
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 2/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-021-00460-w

Weitere Artikel der Ausgabe 2/2021

Innovative Infrastructure Solutions 2/2021 Zur Ausgabe