Skip to main content
Erschienen in: Innovative Infrastructure Solutions 2/2021

01.06.2021 | Technical paper

Design and development of a laboratory model for generation of dynamic stress in soil

verfasst von: Pooja S. Rao, Atul K. Desai, Chandresh H. Solanki

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various full-scale model testing methods adopted by researchers to study response of track structure and the supporting soil against train-induced vibrations are advance and accurate and, however, are very expensive. Besides, standard approaches to study stresses in the subgrades are based on train dynamic loads derived by multiplying static load by an impact factor. Hence, the objective of this study is to develop an innovative, accurate, safe and economical scaled laboratory setup of a locomotive wheel that will generate the desired dynamic effect in the supporting track foundation. To achieve this, an electric drive system, comprising of a motor, a graduated circular disc and a load device, was designed and developed in the laboratory to the scale of 1:30. A representative soil sample from the site was collected in the tank and compacted to its maximum density. The displacement values obtained by integrating accelerometer values from the experimental work are consistent with the displacement outcomes of the finite element simulation with less than 10% variance, which therefore reinforces the dependability of the results. Further, in order to gauge the rate of settlement of the subsoil over the designed life of the track structure, cumulative plastic deformation based on Li and Selig method was derived for the given soil with high plasticity. The soil below the non-ballasted tracks, over the designed life, exhibited settlement levels 7 times higher than the defined permissible limits as per standard codes. It is therefore that the study recommends the adoption of suitable soil remediation techniques before the superstructure is constructed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Guo NZ, Zou JF, Li L, Yang XL (2008) Dynamic compaction theory and experiments in high roadbed filled with red sandstone. J Central South Univ Sci Technol 39(1):185–189 Guo NZ, Zou JF, Li L, Yang XL (2008) Dynamic compaction theory and experiments in high roadbed filled with red sandstone. J Central South Univ Sci Technol 39(1):185–189
2.
Zurück zum Zitat Li J, Zhang J, Qian G, Zheng J, Zhang Y (2019) Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation. J Mater Civ Eng 31(3), 04019004CrossRef Li J, Zhang J, Qian G, Zheng J, Zhang Y (2019) Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation. J Mater Civ Eng 31(3), 04019004CrossRef
3.
Zurück zum Zitat Cai Y, Sun Q, Guo L, Juang CH, Wang J (2015) Permanent deformation characteristics of saturated sand under cyclic loading. Can Geotech J 52(6):795–807CrossRef Cai Y, Sun Q, Guo L, Juang CH, Wang J (2015) Permanent deformation characteristics of saturated sand under cyclic loading. Can Geotech J 52(6):795–807CrossRef
4.
Zurück zum Zitat Basha EA, Hashim R, Mahmud HB, Muntohar AS (2005) Stabilization of residual soil with rice husk ash and cement. J Constr Build Mater 19(6):448–453CrossRef Basha EA, Hashim R, Mahmud HB, Muntohar AS (2005) Stabilization of residual soil with rice husk ash and cement. J Constr Build Mater 19(6):448–453CrossRef
5.
Zurück zum Zitat Tan X, Chen W, Liu H, Chan AHC (2018) Stress–strain characteristics of foamed concrete subjected to large deformation under uniaxial and triaxial compressive loading. J Mater Civ Eng 30(6), 04018095CrossRef Tan X, Chen W, Liu H, Chan AHC (2018) Stress–strain characteristics of foamed concrete subjected to large deformation under uniaxial and triaxial compressive loading. J Mater Civ Eng 30(6), 04018095CrossRef
6.
Zurück zum Zitat Sun Q, Cai Y, Chu J, Dong Q, Wang J (2017) Effect of variable confining pressure on cyclic behaviour of granular soil under triaxial tests. Can Geotech J 54(6):768–777CrossRef Sun Q, Cai Y, Chu J, Dong Q, Wang J (2017) Effect of variable confining pressure on cyclic behaviour of granular soil under triaxial tests. Can Geotech J 54(6):768–777CrossRef
7.
Zurück zum Zitat Fujikawa K, Miura N, Beppu I (1996) Field investigation on the settlement of low embankment due to traffic load and its prediction. J Soils Found 36(4):147–153CrossRef Fujikawa K, Miura N, Beppu I (1996) Field investigation on the settlement of low embankment due to traffic load and its prediction. J Soils Found 36(4):147–153CrossRef
8.
Zurück zum Zitat Chai JC, Miura N (2002) Traffic-load-induced permanent deformation of road on soft subsoil. J Geotech Geoenviron Eng 128(11):907–916CrossRef Chai JC, Miura N (2002) Traffic-load-induced permanent deformation of road on soft subsoil. J Geotech Geoenviron Eng 128(11):907–916CrossRef
9.
Zurück zum Zitat Joseph A, James M (2012) Permanent deformation testing for a new South African mechanistic pavement design method. J Constr Build Mater 26:541–546CrossRef Joseph A, James M (2012) Permanent deformation testing for a new South African mechanistic pavement design method. J Constr Build Mater 26:541–546CrossRef
10.
Zurück zum Zitat Cai YQ, Guo L, Jardine RJ, Yang ZX, Wang J (2017) Stress–strain response of soft clay to traffic loading. Geotechnique 67(5):446–451CrossRef Cai YQ, Guo L, Jardine RJ, Yang ZX, Wang J (2017) Stress–strain response of soft clay to traffic loading. Geotechnique 67(5):446–451CrossRef
11.
Zurück zum Zitat Zhang J, Peng J, Zheng J, Yao Y (2018) Characterisation of stress and moisture-dependent resilient behaviour for compacted clays in South China. J Road Mater Pavement Des 19:1–14CrossRef Zhang J, Peng J, Zheng J, Yao Y (2018) Characterisation of stress and moisture-dependent resilient behaviour for compacted clays in South China. J Road Mater Pavement Des 19:1–14CrossRef
12.
Zurück zum Zitat Zhang JH, Peng J, Zheng J, Dai L, Yao Y (2019) Prediction of resilient modulus of compacted cohesive soils in South China. Int J Geomech 19(7), 04019068CrossRef Zhang JH, Peng J, Zheng J, Dai L, Yao Y (2019) Prediction of resilient modulus of compacted cohesive soils in South China. Int J Geomech 19(7), 04019068CrossRef
13.
Zurück zum Zitat Shih JY, Thompson D, Zervos A (2014) Assessment of track-ground coupled vibration induced by high-speed trains. The 21st International Congress on Sound and Vibration, Beijing Shih JY, Thompson D, Zervos A (2014) Assessment of track-ground coupled vibration induced by high-speed trains. The 21st International Congress on Sound and Vibration, Beijing
14.
Zurück zum Zitat El Kacimi A, Woodward PK, Laghrouche O, Medero G (2013) Time domain 3D finite element modelling of train-induced vibration at high speed. J Comput Struct 118:66–73CrossRef El Kacimi A, Woodward PK, Laghrouche O, Medero G (2013) Time domain 3D finite element modelling of train-induced vibration at high speed. J Comput Struct 118:66–73CrossRef
15.
Zurück zum Zitat Lombaert G, Degrande G (2009) Ground-borne vibration due to static and dynamic axle loads of InterCity and high-speed trains. J Sound Vib 319(3–5):1036–1066CrossRef Lombaert G, Degrande G (2009) Ground-borne vibration due to static and dynamic axle loads of InterCity and high-speed trains. J Sound Vib 319(3–5):1036–1066CrossRef
16.
Zurück zum Zitat Kouroussis G, Verlinden O, Conti C (2009) Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil. Proc Inst Mech Eng Part F J Rail Rapid Transit 223(4):405–413CrossRef Kouroussis G, Verlinden O, Conti C (2009) Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil. Proc Inst Mech Eng Part F J Rail Rapid Transit 223(4):405–413CrossRef
17.
Zurück zum Zitat Kaynia AM, Madshus C, Zackrisson P (2000) Ground vibration from high-speed trains: prediction and countermeasure. J Geotech Geoenviron Eng 126(6):531–537CrossRef Kaynia AM, Madshus C, Zackrisson P (2000) Ground vibration from high-speed trains: prediction and countermeasure. J Geotech Geoenviron Eng 126(6):531–537CrossRef
18.
Zurück zum Zitat Costa PA, Calçada R, Cardoso AS (2012) Track–ground vibrations induced by railway traffic: in-situ measurements and validation of a 2.5D FEM/BEM model. Soil Dyn Earthq Eng J 32(1):111–128CrossRef Costa PA, Calçada R, Cardoso AS (2012) Track–ground vibrations induced by railway traffic: in-situ measurements and validation of a 2.5D FEM/BEM model. Soil Dyn Earthq Eng J 32(1):111–128CrossRef
22.
Zurück zum Zitat Sekine E, Ishikawa T, Kohata Y (2004) Effect of moving wheel load on cyclic plastic deformation of railroad ballast. RTRI Rep 18(3):17–22 Sekine E, Ishikawa T, Kohata Y (2004) Effect of moving wheel load on cyclic plastic deformation of railroad ballast. RTRI Rep 18(3):17–22
24.
Zurück zum Zitat Sheng X, Jones CJC, Petyt M (1999) Ground vibration generated by harmonic load acting on a railway track. J Sound Vib 225(1):3–28CrossRef Sheng X, Jones CJC, Petyt M (1999) Ground vibration generated by harmonic load acting on a railway track. J Sound Vib 225(1):3–28CrossRef
25.
Zurück zum Zitat Luo L, Zhang G, Wu W, Chai X (2006) Control of track irregularity in wheel–rail systems. China Railway Press, Beijing Luo L, Zhang G, Wu W, Chai X (2006) Control of track irregularity in wheel–rail systems. China Railway Press, Beijing
26.
Zurück zum Zitat Li D, Selig ET (1996) Cumulative plastic deformation for fine grained subgrade soils. J Geotech Geoenviron Eng ASCE 122(12):1006–1013CrossRef Li D, Selig ET (1996) Cumulative plastic deformation for fine grained subgrade soils. J Geotech Geoenviron Eng ASCE 122(12):1006–1013CrossRef
27.
Zurück zum Zitat Goldscheider M (1978) Shakedown and incremental collapse of structures in dry sand bodies. In: Proceedings of dynamical methods in soil and rock mechanics, plastic and long-term effects in soils, Balkema, Rotterdam, 2 Goldscheider M (1978) Shakedown and incremental collapse of structures in dry sand bodies. In: Proceedings of dynamical methods in soil and rock mechanics, plastic and long-term effects in soils, Balkema, Rotterdam, 2
30.
Zurück zum Zitat Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. ASCE J Geotech Eng 117:89–107CrossRef Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. ASCE J Geotech Eng 117:89–107CrossRef
31.
Zurück zum Zitat Li D, Selig ET (1998) Method for railroad track foundation design. I: development. J Geotech Geoenviron Eng ASCE 124(4):316–322CrossRef Li D, Selig ET (1998) Method for railroad track foundation design. I: development. J Geotech Geoenviron Eng ASCE 124(4):316–322CrossRef
Metadaten
Titel
Design and development of a laboratory model for generation of dynamic stress in soil
verfasst von
Pooja S. Rao
Atul K. Desai
Chandresh H. Solanki
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 2/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-020-00406-8

Weitere Artikel der Ausgabe 2/2021

Innovative Infrastructure Solutions 2/2021 Zur Ausgabe