Skip to main content
Erschienen in: Measurement Techniques 12/2017

02.05.2017 | LINEAR AND ANGULAR MEASUREMENTS

Features of Numerical Processing of Measurement Information for High-Precision Linear and Angular Measurements

verfasst von: D. A. Masterenko, V. I. Teleshevskii

Erschienen in: Measurement Techniques | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe an approach for processing measurement information obtained using high-precision measurement methods for random variation of the data in the range of several discrete units. We present formulas for estimating the quantity to be measured. We consider an example of the use of the indicated approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. N. Grigor’ev, V. I. Teleshevskii, A. G. Andreev, et al., “Problem of the construction of precision machine tools for preparation of parts with nanometer accuracy,” Vest. MGTU Stankin, No. 3 (34), 9–14 (2015). S. N. Grigor’ev, V. I. Teleshevskii, A. G. Andreev, et al., “Problem of the construction of precision machine tools for preparation of parts with nanometer accuracy,” Vest. MGTU Stankin, No. 3 (34), 9–14 (2015).
2.
Zurück zum Zitat S. N. Grigor’ev, A. A. Kutin, and V. A. Dolgov, “Principles of construction of numerical products in machine construction,” Vest. MGTU Stankin, No. 4 (31), 10–15 (2014). S. N. Grigor’ev, A. A. Kutin, and V. A. Dolgov, “Principles of construction of numerical products in machine construction,” Vest. MGTU Stankin, No. 4 (31), 10–15 (2014).
3.
Zurück zum Zitat V. I. Teleshevskii and V. A. Sokolov, “Analysis of three-dimensional geometric errors in multicoordinate measuring and technological systems on the basis of laser measurements,” Izmer. Tekhn., No. 12, 19–23 (2013). V. I. Teleshevskii and V. A. Sokolov, “Analysis of three-dimensional geometric errors in multicoordinate measuring and technological systems on the basis of laser measurements,” Izmer. Tekhn., No. 12, 19–23 (2013).
4.
Zurück zum Zitat V. A. Sokolov and K. K. Basalaev, “Method of automated correction of three-dimensional errors of multicoordinate systems on the basis of laser interference measurements,” Development of Science and Education in the Modern World: Proc. Int. Sci.-Pract. Conf. (2015), pp. 83–85. V. A. Sokolov and K. K. Basalaev, “Method of automated correction of three-dimensional errors of multicoordinate systems on the basis of laser interference measurements,” Development of Science and Education in the Modern World: Proc. Int. Sci.-Pract. Conf. (2015), pp. 83–85.
5.
Zurück zum Zitat V. I. Teleshevskii and V. A. Sokolov, “Laser measuring information system for increasing the accuracy of multicoordinate machine tools with NPC,” Vest. MGTU Stankin, No. 4 (34), 8–10 (2011). V. I. Teleshevskii and V. A. Sokolov, “Laser measuring information system for increasing the accuracy of multicoordinate machine tools with NPC,” Vest. MGTU Stankin, No. 4 (34), 8–10 (2011).
6.
Zurück zum Zitat S. G. Grishin, Heterodyne Laser Interference System for Measurement of Linear Displacements with an Anisotropic Acousto-Optical Light-Frequency Converter: Auth. Abstr. Disert. Cand. Techn. Sci., MGTU Stanlin, Moscow (2012). S. G. Grishin, Heterodyne Laser Interference System for Measurement of Linear Displacements with an Anisotropic Acousto-Optical Light-Frequency Converter: Auth. Abstr. Disert. Cand. Techn. Sci., MGTU Stanlin, Moscow (2012).
7.
Zurück zum Zitat G. Michalecki, “Automatic calibration of gage blocks measured by optical interferometry,” Meas. Sci. Rev., 1, No. 1, 93–96 (2001). G. Michalecki, “Automatic calibration of gage blocks measured by optical interferometry,” Meas. Sci. Rev., 1, No. 1, 93–96 (2001).
8.
Zurück zum Zitat A. V. Loparev , A. V. Pravdivtsev, P. S. Ignat’ev, et al., “Metrological platform with a modulation-interference microscope,” Opt. Zh., 79, No. 6, 79–85 (2012). A. V. Loparev , A. V. Pravdivtsev, P. S. Ignat’ev, et al., “Metrological platform with a modulation-interference microscope,” Opt. Zh., 79, No. 6, 79–85 (2012).
9.
Zurück zum Zitat S. N. Grigor’ev, A. G. Andreev, P. S. Ignat’ev, et al., “Metrological certification of laser microscopes based on the principles of modulation interferometry with control phase shift,” Vest. MGTU Stankin, No. 3 (34), 67–75 (2015). S. N. Grigor’ev, A. G. Andreev, P. S. Ignat’ev, et al., “Metrological certification of laser microscopes based on the principles of modulation interferometry with control phase shift,” Vest. MGTU Stankin, No. 3 (34), 67–75 (2015).
10.
Zurück zum Zitat S. G. Grishin, “Estimate of the phase error in heterodyne laser interference measurement systems,” Izmer. Tekhn., No. 8, 11–13 (2011). S. G. Grishin, “Estimate of the phase error in heterodyne laser interference measurement systems,” Izmer. Tekhn., No. 8, 11–13 (2011).
11.
Zurück zum Zitat GOST R 8.736–2011, GSI. State System for Guaranteeing Units of Measurement. Direct Repeated Measurements. Methods for Processing Measurement Results. Fundamental Regulations. GOST R 8.736–2011, GSI. State System for Guaranteeing Units of Measurement. Direct Repeated Measurements. Methods for Processing Measurement Results. Fundamental Regulations.
12.
Zurück zum Zitat D. A. Masterenko, “Selection of the best estimate of a measured quantity based on strongly discretized observations,” Izmer. Tekhn., No. 7, 17–20 (2011). D. A. Masterenko, “Selection of the best estimate of a measured quantity based on strongly discretized observations,” Izmer. Tekhn., No. 7, 17–20 (2011).
13.
Zurück zum Zitat D. A. Masterenko, “Investigation of estimates of parameters of a linear statistical model based on strongly discretized observations,” Vest. MGTU Stankin, No. 3 (22), 89–93 (2012). D. A. Masterenko, “Investigation of estimates of parameters of a linear statistical model based on strongly discretized observations,” Vest. MGTU Stankin, No. 3 (22), 89–93 (2012).
14.
Zurück zum Zitat D. A. Masterenko, Increase in the Accuracy of Information-Measurement Systems of Automated Production Based on Methods of Statistical Processing of Strongly Discretized Observations: Auth. Abstr. Disert. Doct. Techn. Sci., MGTU Stankin, Moscow (2015). D. A. Masterenko, Increase in the Accuracy of Information-Measurement Systems of Automated Production Based on Methods of Statistical Processing of Strongly Discretized Observations: Auth. Abstr. Disert. Doct. Techn. Sci., MGTU Stankin, Moscow (2015).
15.
Zurück zum Zitat GOST R ISO 5725-1–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 1. Fundamental Regulations and Definitions. GOST R ISO 5725-1–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 1. Fundamental Regulations and Definitions.
16.
Zurück zum Zitat GOST R ISO 5725-2–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 2. Fundamental Method for the Determination of the Repetition and Reproducibility of a Standard Measurement Method. GOST R ISO 5725-2–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 2. Fundamental Method for the Determination of the Repetition and Reproducibility of a Standard Measurement Method.
17.
Zurück zum Zitat GOST R ISO 5725-3–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 3. Secondary Indicators of Precision of a Standard Measurement Method. GOST R ISO 5725-3–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 3. Secondary Indicators of Precision of a Standard Measurement Method.
18.
Zurück zum Zitat GOST R ISO 5725-4–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 4. Fundamental Methods for the Determination of the Correctness of a Standard Measurement Method. GOST R ISO 5725-4–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 4. Fundamental Methods for the Determination of the Correctness of a Standard Measurement Method.
19.
Zurück zum Zitat GOST R ISO 5725-5–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 5. Alternative Methods for the Determination of the Precision of a Standard Measurement Method. GOST R ISO 5725-5–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 5. Alternative Methods for the Determination of the Precision of a Standard Measurement Method.
20.
Zurück zum Zitat GOST R ISO 5725-6–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 6. Use of Exact Values in Practice. GOST R ISO 5725-6–2002, Accuracy (correctness and precision) of Measurement Methods and Results. Part 6. Use of Exact Values in Practice.
Metadaten
Titel
Features of Numerical Processing of Measurement Information for High-Precision Linear and Angular Measurements
verfasst von
D. A. Masterenko
V. I. Teleshevskii
Publikationsdatum
02.05.2017
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 12/2017
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-017-1125-3

Weitere Artikel der Ausgabe 12/2017

Measurement Techniques 12/2017 Zur Ausgabe