Skip to main content
Erschienen in: Journal of Materials Science 18/2018

14.06.2018 | Electronic materials

Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride

verfasst von: Marianna V. Kharlamova, Christian Kramberger, Oleg Domanov, Andreas Mittelberger, Kazuhiro Yanagi, Thomas Pichler, Dominik Eder

Erschienen in: Journal of Materials Science | Ausgabe 18/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals of silver chloride. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. Our results indicate the p-doping of nanotubes by silver chloride accompanied by the charge transfer from the nanotubes to the encapsulated compound and the downshift of the Fermi level by 0.36 eV. The calculated number of transferred electrons per nanotube carbon atom and the charge transfer density per nanotube length amounted to 0.0024 e per carbon and 0.0406 e/Å, respectively. It was found that the band gap opens up in the band structure of the filled SWCNTs resulting in their transition from metallic into a semiconducting state. This work reveals a direct influence of the incorporated silver chloride on the electronic properties of metallicity-sorted metallic SWCNTs and demonstrates the potential of precise Fermi level engineering of SWCNTs by filling their channels and achieving high doping levels, thus providing a platform for designing next-generation nanoelectronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef
2.
Zurück zum Zitat Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyer R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRef Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyer R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRef
3.
Zurück zum Zitat Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef
4.
Zurück zum Zitat Joselevich E, Dai HJ, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: topics in applied physics, vol 111. Springer, Berlin, pp 101–164CrossRef Joselevich E, Dai HJ, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: topics in applied physics, vol 111. Springer, Berlin, pp 101–164CrossRef
5.
Zurück zum Zitat Kharlamova MV (2015) Single-walled carbon nanotubes: synthesis and modification of the electronic structure. In: D’Souza F, Kadish K (eds) Handbook of carbon nano materials, vol 7. World Scientific Publishing, Singapore, pp 185–229CrossRef Kharlamova MV (2015) Single-walled carbon nanotubes: synthesis and modification of the electronic structure. In: D’Souza F, Kadish K (eds) Handbook of carbon nano materials, vol 7. World Scientific Publishing, Singapore, pp 185–229CrossRef
6.
Zurück zum Zitat Kharlamova MV (2016) Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog Mater Sci 77:125–211CrossRef Kharlamova MV (2016) Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog Mater Sci 77:125–211CrossRef
7.
Zurück zum Zitat Kharlamova MV (2013) Electronic properties of pristine and modified single-walled carbon nanotubes. Phys Usp 56:1047–1073CrossRef Kharlamova MV (2013) Electronic properties of pristine and modified single-walled carbon nanotubes. Phys Usp 56:1047–1073CrossRef
8.
Zurück zum Zitat Fan X, Dickey EC, Eklund PC, Williams KA, Grigorian L, Buczko R, Pantelides ST, Pennycook SJ (2000) Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys Rev Lett 84:4621–4624CrossRef Fan X, Dickey EC, Eklund PC, Williams KA, Grigorian L, Buczko R, Pantelides ST, Pennycook SJ (2000) Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys Rev Lett 84:4621–4624CrossRef
9.
Zurück zum Zitat Chernysheva MV, Kiseleva EA, Verbitskii NI, Eliseev AA, Lukashin AV, Tretyakov YD, Savilov SV, Kiselev NA, Zhigalina OM, Kumskov AS, Krestinin AV, Hutchison JL (2008) The electronic properties of SWNTs intercalated by electron acceptors. Physica E 40:2283–2288CrossRef Chernysheva MV, Kiseleva EA, Verbitskii NI, Eliseev AA, Lukashin AV, Tretyakov YD, Savilov SV, Kiselev NA, Zhigalina OM, Kumskov AS, Krestinin AV, Hutchison JL (2008) The electronic properties of SWNTs intercalated by electron acceptors. Physica E 40:2283–2288CrossRef
10.
Zurück zum Zitat Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater 12:202–205CrossRef Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater 12:202–205CrossRef
11.
Zurück zum Zitat Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480CrossRef Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480CrossRef
12.
Zurück zum Zitat Borowiak-Palen E, Ruemmeli MH, Gemming T, Pichler T, Kalenczuk RJ, Silva SRP (2006) Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 17:2415–2419CrossRef Borowiak-Palen E, Ruemmeli MH, Gemming T, Pichler T, Kalenczuk RJ, Silva SRP (2006) Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 17:2415–2419CrossRef
13.
Zurück zum Zitat Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli MH, Gemming T, Nogues J, Skumryev V, Kalenczuk RJ, Pichler T, Silva SRP (2006) Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem Phys Lett 421:129–133CrossRef Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli MH, Gemming T, Nogues J, Skumryev V, Kalenczuk RJ, Pichler T, Silva SRP (2006) Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem Phys Lett 421:129–133CrossRef
14.
Zurück zum Zitat Sloan J, Kirkland AI, Hutchison JL, Green MLH (2003) Aspects of crystal growth within carbon nanotubes. C R Phys 4:1063–1074CrossRef Sloan J, Kirkland AI, Hutchison JL, Green MLH (2003) Aspects of crystal growth within carbon nanotubes. C R Phys 4:1063–1074CrossRef
15.
Zurück zum Zitat Sloan J, Friedrichs S, Meyer RR, Kirkland AI, Hutchison JL, Green MLH (2002) Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review. Inorg Chim Acta 330:1–12CrossRef Sloan J, Friedrichs S, Meyer RR, Kirkland AI, Hutchison JL, Green MLH (2002) Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review. Inorg Chim Acta 330:1–12CrossRef
16.
Zurück zum Zitat Philp E, Sloan J, Kirkland AI, Meyer RR, Friedrichs S, Hutchison JL, Green MLH (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791CrossRef Philp E, Sloan J, Kirkland AI, Meyer RR, Friedrichs S, Hutchison JL, Green MLH (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791CrossRef
17.
Zurück zum Zitat Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1326CrossRef Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1326CrossRef
18.
Zurück zum Zitat Kirkland AI, Meyer MR, Sloan J, Hutchison JL (2005) Structure determination of atomically controlled crystal architectures grown within single wall carbon nanotubes. Microsc Microanal 11:401–409CrossRef Kirkland AI, Meyer MR, Sloan J, Hutchison JL (2005) Structure determination of atomically controlled crystal architectures grown within single wall carbon nanotubes. Microsc Microanal 11:401–409CrossRef
19.
Zurück zum Zitat Carter R, Sloan J, Kirkland AI, Meyer RR, Lindan PJD, Lin G, Green MLH, Vlandas A, Hutchison JL, Harding J (2006) Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys Rev Lett 96:215501CrossRef Carter R, Sloan J, Kirkland AI, Meyer RR, Lindan PJD, Lin G, Green MLH, Vlandas A, Hutchison JL, Harding J (2006) Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys Rev Lett 96:215501CrossRef
20.
Zurück zum Zitat Carter R, Suyetin M, Lister S, Dyson MA, Trewhitt H, Goel S, Liu Z, Suenaga K, Giusca C, Kashtiban RJ, Hutchison JL, Dore JC, Bell GR, Bichoutskaia E, Sloan J (2014) Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 4:7391–7399CrossRef Carter R, Suyetin M, Lister S, Dyson MA, Trewhitt H, Goel S, Liu Z, Suenaga K, Giusca C, Kashtiban RJ, Hutchison JL, Dore JC, Bell GR, Bichoutskaia E, Sloan J (2014) Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 4:7391–7399CrossRef
21.
Zurück zum Zitat Hulman M, Kuzmany H, Costa PMFJ, Friedrichs S, Green MLH (2004) Light-induced instability of PbO-filled single-wall carbon nanotubes. Appl Phys Lett 85:2068–2070CrossRef Hulman M, Kuzmany H, Costa PMFJ, Friedrichs S, Green MLH (2004) Light-induced instability of PbO-filled single-wall carbon nanotubes. Appl Phys Lett 85:2068–2070CrossRef
22.
Zurück zum Zitat Bajpai A, Gorantla S, Loffler M, Hampel S, Rummeli MH, Thomas J, Ritschel M, Gemming T, Buechner B, Klingeler R (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709CrossRef Bajpai A, Gorantla S, Loffler M, Hampel S, Rummeli MH, Thomas J, Ritschel M, Gemming T, Buechner B, Klingeler R (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709CrossRef
23.
Zurück zum Zitat Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387CrossRef Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387CrossRef
24.
Zurück zum Zitat Luzzi DE, Smith BW (2000) Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon 38:1751–1756CrossRef Luzzi DE, Smith BW (2000) Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon 38:1751–1756CrossRef
25.
Zurück zum Zitat Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K, Iijima S, Suzuki S, Achiba Y, Kratschmer W (2001) High-yield fullerene encapsulation in single-wall carbon nanotubes. Synthet Met 121:1195–1196CrossRef Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K, Iijima S, Suzuki S, Achiba Y, Kratschmer W (2001) High-yield fullerene encapsulation in single-wall carbon nanotubes. Synthet Met 121:1195–1196CrossRef
26.
Zurück zum Zitat Khlobystov AN, Porfyrakis K, Kanai M, Britz DA, Ardavan A, Shinohara H, Dennis TJS, Briggs GAD (2004) Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew Chem Int Ed 43:1386–1389CrossRef Khlobystov AN, Porfyrakis K, Kanai M, Britz DA, Ardavan A, Shinohara H, Dennis TJS, Briggs GAD (2004) Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew Chem Int Ed 43:1386–1389CrossRef
27.
Zurück zum Zitat Guan LH, Shi ZJ, Li MX, Gu ZN (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRef Guan LH, Shi ZJ, Li MX, Gu ZN (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRef
28.
Zurück zum Zitat Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485CrossRef Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485CrossRef
29.
Zurück zum Zitat Shiozawa H, Kramberger C, Pfeiffer R, Kuzmany H, Pichler T, Liu Z, Suenaga K, Kataura H, Silva SRP (2010) Catalyst and chirality dependent growth of carbon nanotubes determined through nano-test tube chemistry. Adv Mater 22:3685–3689CrossRef Shiozawa H, Kramberger C, Pfeiffer R, Kuzmany H, Pichler T, Liu Z, Suenaga K, Kataura H, Silva SRP (2010) Catalyst and chirality dependent growth of carbon nanotubes determined through nano-test tube chemistry. Adv Mater 22:3685–3689CrossRef
30.
Zurück zum Zitat Monthioux M, Flahaut E, Cleuziou JP (2006) Hybrid carbon nanotubes: strategy, progress, and perspectives. J Mater Res 21:2774–2793CrossRef Monthioux M, Flahaut E, Cleuziou JP (2006) Hybrid carbon nanotubes: strategy, progress, and perspectives. J Mater Res 21:2774–2793CrossRef
31.
Zurück zum Zitat Kharlamova MV, Yashina LV, Volykhov AA, Niu JJ, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Belogorokhov AI, Eliseev AA (2012) Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 85:34CrossRef Kharlamova MV, Yashina LV, Volykhov AA, Niu JJ, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Belogorokhov AI, Eliseev AA (2012) Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 85:34CrossRef
32.
Zurück zum Zitat Kharlamova MV, Yashina LV, Eliseev AA, Volykhov AA, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Lukashin AV, Tretyakov YD (2012) Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 249:2328–2332CrossRef Kharlamova MV, Yashina LV, Eliseev AA, Volykhov AA, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Lukashin AV, Tretyakov YD (2012) Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 249:2328–2332CrossRef
34.
Zurück zum Zitat Kharlamova MV (2016) Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Appl Phys A 122:791CrossRef Kharlamova MV (2016) Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Appl Phys A 122:791CrossRef
35.
Zurück zum Zitat Kharlamova MV, Kramberger C, Pichler T (2016) Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride. Phys Status Solidi B 253:2433–2439CrossRef Kharlamova MV, Kramberger C, Pichler T (2016) Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride. Phys Status Solidi B 253:2433–2439CrossRef
36.
Zurück zum Zitat Kharlamova MV, Niu JJ (2012) Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl Phys A 109:25–29CrossRef Kharlamova MV, Niu JJ (2012) Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl Phys A 109:25–29CrossRef
37.
Zurück zum Zitat Kharlamova MV, Niu JJ (2012) Donor doping of single-walled carbon nanotubes by filling of channels with silver. J Exp Theor Phys 115:485–491CrossRef Kharlamova MV, Niu JJ (2012) Donor doping of single-walled carbon nanotubes by filling of channels with silver. J Exp Theor Phys 115:485–491CrossRef
38.
Zurück zum Zitat Kharlamova MV, Niu JJ (2012) New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett 95:314–319CrossRef Kharlamova MV, Niu JJ (2012) New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett 95:314–319CrossRef
39.
Zurück zum Zitat Kharlamova MV, Sauer M, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2015) Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 7:1383–1391CrossRef Kharlamova MV, Sauer M, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2015) Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 7:1383–1391CrossRef
40.
Zurück zum Zitat Shiozawa H, Pichler T, Kramberger C, Grueneis A, Knupfer M, Buechner B, Zylyomi V, Koltai J, Kuerti J, Batchelor D, Kataura H (2008) Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Phys Rev B 77:153402CrossRef Shiozawa H, Pichler T, Kramberger C, Grueneis A, Knupfer M, Buechner B, Zylyomi V, Koltai J, Kuerti J, Batchelor D, Kataura H (2008) Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Phys Rev B 77:153402CrossRef
41.
Zurück zum Zitat Shiozawa H, Pichler T, Kramberger C, Ruemmeli M, Batchelor D, Liu Z, Suenaga K, Kataura H, Silva SRP (2009) Screening the missing electron: nanochemistry in action. Phys Rev Lett 102:046804CrossRef Shiozawa H, Pichler T, Kramberger C, Ruemmeli M, Batchelor D, Liu Z, Suenaga K, Kataura H, Silva SRP (2009) Screening the missing electron: nanochemistry in action. Phys Rev Lett 102:046804CrossRef
42.
Zurück zum Zitat Kharlamova MV, Kramberger C, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2017) Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale 9:7998–8006CrossRef Kharlamova MV, Kramberger C, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2017) Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale 9:7998–8006CrossRef
43.
Zurück zum Zitat Kharlamova MV, Sauer M, Saito T, Krause S, Liu X, Yanagi K, Pichler T, Shiozawa H (2013) Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Phys Status Solidi B 250:2575–2580CrossRef Kharlamova MV, Sauer M, Saito T, Krause S, Liu X, Yanagi K, Pichler T, Shiozawa H (2013) Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Phys Status Solidi B 250:2575–2580CrossRef
44.
Zurück zum Zitat Yashina LV, Eliseev AA, Kharlamova MV, Volykhov AA, Egorov AV, Savilov SV, Lukashin AV, Puttner R, Belogorokhov AI (2011) Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 115:3578–3586CrossRef Yashina LV, Eliseev AA, Kharlamova MV, Volykhov AA, Egorov AV, Savilov SV, Lukashin AV, Puttner R, Belogorokhov AI (2011) Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 115:3578–3586CrossRef
45.
Zurück zum Zitat Kharlamova MV, Yashina LV, Lukashin AV (2013) Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 112:297–304CrossRef Kharlamova MV, Yashina LV, Lukashin AV (2013) Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 112:297–304CrossRef
47.
Zurück zum Zitat Kuzmany H, Plank W, Hulman M, Kramberger C, Gruneis A, Pichler T, Peterlik H, Kataura H, Achiba Y (2001) Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur Phys J B 22:307–320CrossRef Kuzmany H, Plank W, Hulman M, Kramberger C, Gruneis A, Pichler T, Peterlik H, Kataura H, Achiba Y (2001) Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur Phys J B 22:307–320CrossRef
48.
Zurück zum Zitat Araujo PT, Maciel IO, Pesce PBC, Pimenta MA, Doorn SK, Qian H, Hartschuh A, Steiner M, Grigorian L, Hata K, Jorio A (2008) Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403CrossRef Araujo PT, Maciel IO, Pesce PBC, Pimenta MA, Doorn SK, Qian H, Hartschuh A, Steiner M, Grigorian L, Hata K, Jorio A (2008) Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403CrossRef
49.
Zurück zum Zitat Kramberger C, Rauf H, Knupfer M, Shiozawa H, Batchelor D, Rubio A, Kataura H, Pichler T (2009) Potassium-intercalated single-wall carbon nanotube bundles: archetypes for semiconductor/metal hybrid systems. Phys Rev B 79:195442CrossRef Kramberger C, Rauf H, Knupfer M, Shiozawa H, Batchelor D, Rubio A, Kataura H, Pichler T (2009) Potassium-intercalated single-wall carbon nanotube bundles: archetypes for semiconductor/metal hybrid systems. Phys Rev B 79:195442CrossRef
50.
Zurück zum Zitat Ishii H, Kataura H, Shiozawa H, Yoshioka H, Otsubo H, Takayama Y, Miyahara T, Suzuki S, Achiba Y, Nakatake M, Narimura T, Higashiguchi M, Shimada K, Namatame H, Taniguchi M (2003) Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426:540–544CrossRef Ishii H, Kataura H, Shiozawa H, Yoshioka H, Otsubo H, Takayama Y, Miyahara T, Suzuki S, Achiba Y, Nakatake M, Narimura T, Higashiguchi M, Shimada K, Namatame H, Taniguchi M (2003) Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426:540–544CrossRef
51.
Zurück zum Zitat Rauf H, Pichler T, Knupfer M, Fink J, Kataura H (2004) Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes. Phys Rev Lett 93:096805CrossRef Rauf H, Pichler T, Knupfer M, Fink J, Kataura H (2004) Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes. Phys Rev Lett 93:096805CrossRef
52.
Zurück zum Zitat Yanagi K, Udoguchi H, Sagitani S, Oshima Y, Takenobu T, Kataura H, Ishida T, Matsuda K, Maniwa Y (2010) Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 4:4027–4032CrossRef Yanagi K, Udoguchi H, Sagitani S, Oshima Y, Takenobu T, Kataura H, Ishida T, Matsuda K, Maniwa Y (2010) Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 4:4027–4032CrossRef
53.
Zurück zum Zitat Kharlamova MV, Kramberger C, Sauer M, Yanagi K, Pichler T (2015) Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Phys Status Solidi B 252:2512–2518CrossRef Kharlamova MV, Kramberger C, Sauer M, Yanagi K, Pichler T (2015) Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Phys Status Solidi B 252:2512–2518CrossRef
54.
Zurück zum Zitat Kirchhoff F, Holender JM, Gillan MJ (1994) Energetics and electronic structure of silver chloride. Phys Rev B 49:17420–17423CrossRef Kirchhoff F, Holender JM, Gillan MJ (1994) Energetics and electronic structure of silver chloride. Phys Rev B 49:17420–17423CrossRef
55.
Zurück zum Zitat Moulder JF, Stickle WF, Sobol PE, Bomen KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Waltham Moulder JF, Stickle WF, Sobol PE, Bomen KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Waltham
56.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Jorio A, Souza AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061CrossRef Dresselhaus MS, Dresselhaus G, Jorio A, Souza AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061CrossRef
57.
Zurück zum Zitat Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558CrossRef Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558CrossRef
58.
Zurück zum Zitat Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 61:R5137–R5140CrossRef Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 61:R5137–R5140CrossRef
59.
Zurück zum Zitat Fouquet M, Telg H, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2009) Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. Phys Rev Lett 102:075501CrossRef Fouquet M, Telg H, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2009) Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. Phys Rev Lett 102:075501CrossRef
60.
Zurück zum Zitat Sasaki K, Farhat H, Saito R, Dresselhaus MS (2010) Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. Physica E 42:2005–2015CrossRef Sasaki K, Farhat H, Saito R, Dresselhaus MS (2010) Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. Physica E 42:2005–2015CrossRef
61.
Zurück zum Zitat Ayala P, Kitaura R, Kramberger C, Shiozawa H, Imazu N, Kobayashi K, Mowbray DJ, Hoffmann P, Shinohara H, Pichler T (2011) A resonant photoemission insight to the electronic structure of Gd nanowires templated in the hollow core of SWCNTs. Mater Exp 1:30–35CrossRef Ayala P, Kitaura R, Kramberger C, Shiozawa H, Imazu N, Kobayashi K, Mowbray DJ, Hoffmann P, Shinohara H, Pichler T (2011) A resonant photoemission insight to the electronic structure of Gd nanowires templated in the hollow core of SWCNTs. Mater Exp 1:30–35CrossRef
62.
Zurück zum Zitat Ayala P, Kitaura R, Nakanishi R, Shiozawa H, Ogawa D, Hoffmann P, Shinohara H, Pichler T (2011) Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes. Phys Rev B 83:085407CrossRef Ayala P, Kitaura R, Nakanishi R, Shiozawa H, Ogawa D, Hoffmann P, Shinohara H, Pichler T (2011) Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes. Phys Rev B 83:085407CrossRef
63.
Zurück zum Zitat Eliseev AA, Yashina LV, Verbitskiy NI, Brzhezinskaya MM, Kharlamova MV, Chernysheva MV, Lukashin AV, Kiselev NA, Kumskov AS, Freitag B, Generalov AV, Vinogradov AS, Zubavichus YV, Kleimenov E, Nachtegaal M (2012) Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 50:4021–4039CrossRef Eliseev AA, Yashina LV, Verbitskiy NI, Brzhezinskaya MM, Kharlamova MV, Chernysheva MV, Lukashin AV, Kiselev NA, Kumskov AS, Freitag B, Generalov AV, Vinogradov AS, Zubavichus YV, Kleimenov E, Nachtegaal M (2012) Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 50:4021–4039CrossRef
Metadaten
Titel
Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride
verfasst von
Marianna V. Kharlamova
Christian Kramberger
Oleg Domanov
Andreas Mittelberger
Kazuhiro Yanagi
Thomas Pichler
Dominik Eder
Publikationsdatum
14.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2575-y

Weitere Artikel der Ausgabe 18/2018

Journal of Materials Science 18/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.