Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 9/2011

01.09.2011

Ferrite Grain Size Distributions in Ultra-Fine-Grained High-Strength Low-Alloy Steel After Controlled Thermomechanical Deformation

verfasst von: S. Patra, S. Roy, Vinod Kumar, A. Haldar, D. Chakrabarti

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 9/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plane-strain compression testing was carried out above, around, and below the A r3 temperature with the deformation temperature, T def, varying between 1323 K and 973 K (1050 °C and 700 °C), using Gleeble 3500, to develop uniform distribution of ultra-fine ferrite (UFF) grains. Prior austenite (γ) grain structure, developed after soaking at 1473 K (1200 °C), was mixed in nature, comprising both coarse- and fine-γ-grain sizes. Applying heavy deformation in a single pass, just above the austenite-to-ferrite (α) transformation temperature (A r3), and cooling to room temperature resulted in the formation of UFF grain sizes (average α-grain size ~2 to 3 μm), with the largest grain sizes extending up to ~10 to 12 μm. Water quenching just after deformation prevented the coarsening of UFF grains and restricted the largest grain sizes to under 6 μm. Although the ferrite grain structures appeared homogeneous in slowly cooled samples (cooling rate (CR) 1 K/s), careful observation revealed the presence of alternate bands of coarse- (5 to 10 μm) and fine-α grains (<1 to 3 μm). The final α-grain size distributions were explained in view of the starting γ-grain size variation, dynamic recrystallization (DRX) of γ, dynamic strain-induced γ-to-α transformation (DSIT), and DRX of α and grain growth during slow cooling. Electron backscattered diffraction analysis (EBSD) revealed the presence of a large fraction (70 to 80 pct) of high-angle boundaries, having misorientation ≥15 deg. Compared to the use of the single, heavy deformation pass, the application of a number of lighter passes between A e3 and A r3 temperatures is more suitable in industrial rolling conditions, and also has the potential of developing UFF grains with high-angle boundaries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
LECO is a trademark of LECO Corporation, St. Joseph, MI.
 
Literatur
1.
Zurück zum Zitat T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, Book 615. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, Book 615.
2.
Zurück zum Zitat D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.CrossRef D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.CrossRef
3.
4.
Zurück zum Zitat D. Chakrabarti, C.L. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1963–77.CrossRef D. Chakrabarti, C.L. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1963–77.CrossRef
5.
Zurück zum Zitat J. Majta, J.G. Lenard, and M. Pietrzyk: ISIJ Int., 1996, vol. 36 (8), pp. 1094–1102.CrossRef J. Majta, J.G. Lenard, and M. Pietrzyk: ISIJ Int., 1996, vol. 36 (8), pp. 1094–1102.CrossRef
6.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.CrossRef R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.CrossRef
7.
Zurück zum Zitat R. Priestner and P.D. Hodgson: Mater. Sci. Technol., 1992, vol. 8, pp. 849–54. R. Priestner and P.D. Hodgson: Mater. Sci. Technol., 1992, vol. 8, pp. 849–54.
8.
Zurück zum Zitat R. Priestner and E. de los Rios: Met. Technol., 1980, vol. 7, pp. 309–16. R. Priestner and E. de los Rios: Met. Technol., 1980, vol. 7, pp. 309–16.
9.
Zurück zum Zitat R. Priestner, Y.M. Al-Horr, and A.K. Ibraheem: Mater. Sci. Technol., 2002, vol. 18, pp. 973–80.CrossRef R. Priestner, Y.M. Al-Horr, and A.K. Ibraheem: Mater. Sci. Technol., 2002, vol. 18, pp. 973–80.CrossRef
10.
Zurück zum Zitat A.K. Ibraheem, R. Priestner, J.R. Bowen, P.B. Prangnell, and F.J. Humphreys: Ironmaking and Steelmaking, 2001, vol. 28 (2), pp. 203–08.CrossRef A.K. Ibraheem, R. Priestner, J.R. Bowen, P.B. Prangnell, and F.J. Humphreys: Ironmaking and Steelmaking, 2001, vol. 28 (2), pp. 203–08.CrossRef
11.
Zurück zum Zitat R. Priestner and A.K. Ibraheem: Mater. Sci. Technol., 2000, vol. 16, pp. 1267–72.CrossRef R. Priestner and A.K. Ibraheem: Mater. Sci. Technol., 2000, vol. 16, pp. 1267–72.CrossRef
12.
Zurück zum Zitat M.R. Hickson, R.K. Gibbs, and P.D. Hodgson: ISIJ Int., 1999, vol. 39, pp. 1176–80.CrossRef M.R. Hickson, R.K. Gibbs, and P.D. Hodgson: ISIJ Int., 1999, vol. 39, pp. 1176–80.CrossRef
13.
Zurück zum Zitat P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: Scripta Mater., 1999, vol. 40, pp. 1179–84.CrossRef P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: Scripta Mater., 1999, vol. 40, pp. 1179–84.CrossRef
14.
Zurück zum Zitat J.H. Beynon, R.E. Gloss, and P.D. Hodgson: Mater. Forum, 1992, vol. 16, pp. 37–42. J.H. Beynon, R.E. Gloss, and P.D. Hodgson: Mater. Forum, 1992, vol. 16, pp. 37–42.
15.
Zurück zum Zitat P.J. Hurley and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 302, pp. 206–14.CrossRef P.J. Hurley and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 302, pp. 206–14.CrossRef
16.
Zurück zum Zitat T. Morimoto, I. Chikushi, R. Kurahashi, and J. Yanagimoto: Proc. TMP 2004: 2nd Int. Conf. on Thermomechanical Processing of Steels, Stahleisen Verlag GmbH, Dusseldorf, Germany, 2004, pp. 415–22. T. Morimoto, I. Chikushi, R. Kurahashi, and J. Yanagimoto: Proc. TMP 2004: 2nd Int. Conf. on Thermomechanical Processing of Steels, Stahleisen Verlag GmbH, Dusseldorf, Germany, 2004, pp. 415–22.
17.
Zurück zum Zitat H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 450–63.CrossRef H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 450–63.CrossRef
18.
Zurück zum Zitat K. Mukherjee, S.S. Hazra, and M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2145–59.CrossRef K. Mukherjee, S.S. Hazra, and M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2145–59.CrossRef
19.
Zurück zum Zitat P.R. Rios, I. de S. Bott, D.B. Santos, T.M.F. de Melo, and J.L. Ferreira: Mater. Sci. Technol., 2007, vol. 23 (4), pp. 417–22.CrossRef P.R. Rios, I. de S. Bott, D.B. Santos, T.M.F. de Melo, and J.L. Ferreira: Mater. Sci. Technol., 2007, vol. 23 (4), pp. 417–22.CrossRef
20.
Zurück zum Zitat B. Eghbali and A. Abdollah-zadeh: Scripta Mater., 2006, vol. 54, pp. 1205–09.CrossRef B. Eghbali and A. Abdollah-zadeh: Scripta Mater., 2006, vol. 54, pp. 1205–09.CrossRef
21.
Zurück zum Zitat H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mater. Sci. Eng. A, 2004, vol. 371, pp. 343–52.CrossRef H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mater. Sci. Eng. A, 2004, vol. 371, pp. 343–52.CrossRef
22.
Zurück zum Zitat M.R. Hickson, P.J. Hurley, R.K. Gibbs, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1019–26.CrossRef M.R. Hickson, P.J. Hurley, R.K. Gibbs, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1019–26.CrossRef
23.
Zurück zum Zitat B. Eghbali and A. Abdollah-Zadeh: Mater. Design, 2007, vol. 28, pp. 1021–26.CrossRef B. Eghbali and A. Abdollah-Zadeh: Mater. Design, 2007, vol. 28, pp. 1021–26.CrossRef
24.
Zurück zum Zitat C. Zhang, N. Xiao, L. Hao, D. Li, and Y. Li: Acta Mater., 2009, vol. 57, pp. 2956–68.CrossRef C. Zhang, N. Xiao, L. Hao, D. Li, and Y. Li: Acta Mater., 2009, vol. 57, pp. 2956–68.CrossRef
25.
Zurück zum Zitat T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32 (2), pp. 189–209.CrossRef T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32 (2), pp. 189–209.CrossRef
26.
Zurück zum Zitat A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 361, pp. 367–76.CrossRef A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 361, pp. 367–76.CrossRef
27.
28.
Zurück zum Zitat T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 1781–90.CrossRef T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 1781–90.CrossRef
29.
Zurück zum Zitat A. Najafi-Zadeh, J.J. Jonas, and S. Yue: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 2607–17. A. Najafi-Zadeh, J.J. Jonas, and S. Yue: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 2607–17.
30.
Zurück zum Zitat P.J. Hurley, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2985–93.CrossRef P.J. Hurley, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2985–93.CrossRef
31.
Zurück zum Zitat D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Sci. Technol., 2009, vol. 25, pp. 8939–46.CrossRef D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Sci. Technol., 2009, vol. 25, pp. 8939–46.CrossRef
32.
Zurück zum Zitat E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.CrossRef E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.CrossRef
33.
Zurück zum Zitat J.-K. Choi, D.-H. Seo, J.-S. Lee, K.-K. Um, and W.-Y. Choo: ISIJ Int., 2003, vol. 43 (5), pp. 746–54.CrossRef J.-K. Choi, D.-H. Seo, J.-S. Lee, K.-K. Um, and W.-Y. Choo: ISIJ Int., 2003, vol. 43 (5), pp. 746–54.CrossRef
34.
Zurück zum Zitat F. Siciliano, Jr., K. Minami, T.M. Maccagno, and J.J. Jonas: ISIJ Int., 1996, vol. 36, pp. 1500–06.CrossRef F. Siciliano, Jr., K. Minami, T.M. Maccagno, and J.J. Jonas: ISIJ Int., 1996, vol. 36, pp. 1500–06.CrossRef
35.
Zurück zum Zitat Y. Misaka and T. Yoshimoto: J. Jpn. Soc. Technol. Plast., 1968, vol. 8, pp. 414–22. Y. Misaka and T. Yoshimoto: J. Jpn. Soc. Technol. Plast., 1968, vol. 8, pp. 414–22.
36.
37.
Zurück zum Zitat Y.D. Huang, W.Y Yang, and Z.Q. Sun: J. Mater. Process. Technol., 2003, vol. 134, pp. 19–25.CrossRef Y.D. Huang, W.Y Yang, and Z.Q. Sun: J. Mater. Process. Technol., 2003, vol. 134, pp. 19–25.CrossRef
38.
Zurück zum Zitat M. Militzer and Y. Brechet: Metall. Mater. Eng. A, 2009, vol. 40A, pp. 2273–82.CrossRef M. Militzer and Y. Brechet: Metall. Mater. Eng. A, 2009, vol. 40A, pp. 2273–82.CrossRef
39.
Zurück zum Zitat P.D. Hodgson and R.K. Gibbs: ISIJ Int., 1992, vol. 32, pp. 1329–38.CrossRef P.D. Hodgson and R.K. Gibbs: ISIJ Int., 1992, vol. 32, pp. 1329–38.CrossRef
40.
Zurück zum Zitat Y.D. Huang and L. Froyen: J. Mater. Process. Technol., 2002, vol. 124, pp. 216–26. Y.D. Huang and L. Froyen: J. Mater. Process. Technol., 2002, vol. 124, pp. 216–26.
41.
42.
Zurück zum Zitat R.K. Ray, M.P. Butron-Guillen, J. Jonas, and G.E. Ruddle: ISIJ Int., 1992, vol. 32 (2), pp. 203–12.CrossRef R.K. Ray, M.P. Butron-Guillen, J. Jonas, and G.E. Ruddle: ISIJ Int., 1992, vol. 32 (2), pp. 203–12.CrossRef
43.
Zurück zum Zitat ASTM E384-99 Standard Test Method for Microindentation Hardness of Materials: Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2000, vol. 3.01, pp. 437–60. ASTM E384-99 Standard Test Method for Microindentation Hardness of Materials: Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2000, vol. 3.01, pp. 437–60.
Metadaten
Titel
Ferrite Grain Size Distributions in Ultra-Fine-Grained High-Strength Low-Alloy Steel After Controlled Thermomechanical Deformation
verfasst von
S. Patra
S. Roy
Vinod Kumar
A. Haldar
D. Chakrabarti
Publikationsdatum
01.09.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 9/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0668-1

Weitere Artikel der Ausgabe 9/2011

Metallurgical and Materials Transactions A 9/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.