Skip to main content

2023 | OriginalPaper | Buchkapitel

3. Fibre Reinforced Polymer Composites Two-Way Slabs

verfasst von : Sindu Satasivam, Yu Bai, Yue Yang, Lei Zhu, Xiao-Ling Zhao

Erschienen in: Composites for Building Assembly

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a modular assembly of sandwich structures using glass fibre reinforced polymer (GFRP) components for two-way slab applications. The sandwich assemblies were built-up sections made from pultruded web-core box (i.e. square hollow section) profiles incorporated between two flat panels, connected via adhesive bonding or novel blind bolts. Two different pultrusion orientations were achieved and examined i.e. flat panels with pultrusion directions either parallel (unidirectional orientation) or perpendicular (bidirectional orientation) to the web-core box profiles. The effects of pultrusion orientation, shear connection and the presence of foam core materials on strength and stiffness were investigated by experimental testing of two-way slab specimens until failure. Sandwich slabs with unidirectional orientation showed premature cracking of the upper panel between fibres, whereas those with bidirectional orientation showed local out-of-plane buckling of the upper flat panel. The unidirectional slab also showed greater bending stiffness than bidirectional slabs due to the weak in-plane shear stiffness provided by the web-core profiles, which introduced partial composite action between the upper and lower flat panels of the bidirectional slab. Finite element models and analytical techniques were developed to estimate deformation, failure loads and the degree of composite action, and these showed reasonable agreement with the experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction - State-of-the-art review. J Compos Constr 6:73–87CrossRef Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction - State-of-the-art review. J Compos Constr 6:73–87CrossRef
2.
Zurück zum Zitat Hollaway LC (2010) A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr Build Mater 24:2419–2445CrossRef Hollaway LC (2010) A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr Build Mater 24:2419–2445CrossRef
3.
Zurück zum Zitat Halliwell S (2010) Technical papers: FRPs—the environmental agenda. Adv Struct Eng 13:783–791CrossRef Halliwell S (2010) Technical papers: FRPs—the environmental agenda. Adv Struct Eng 13:783–791CrossRef
4.
Zurück zum Zitat Mara V, Haghani R, Harryson P (2014) Bridge decks of fibre reinforced polymer (FRP): a sustainable solution. Constr Build Mater 50:190–199CrossRef Mara V, Haghani R, Harryson P (2014) Bridge decks of fibre reinforced polymer (FRP): a sustainable solution. Constr Build Mater 50:190–199CrossRef
5.
Zurück zum Zitat Satasivam S, Bai Y, Zhao X-L (2014) Adhesively bonded modular GFRP web–flange sandwich for building floor construction. Compos Struct 111:381–392CrossRef Satasivam S, Bai Y, Zhao X-L (2014) Adhesively bonded modular GFRP web–flange sandwich for building floor construction. Compos Struct 111:381–392CrossRef
6.
Zurück zum Zitat Satasivam S, Bai Y (2014) Mechanical performance of bolted modular GFRP composite sandwich structures using standard and blind bolts. Compos Struct 117:59–70CrossRef Satasivam S, Bai Y (2014) Mechanical performance of bolted modular GFRP composite sandwich structures using standard and blind bolts. Compos Struct 117:59–70CrossRef
7.
Zurück zum Zitat Satasivam S, Bai Y (2016) Mechanical performance of FRP-steel composite beams for building construction. Mater Struct 49(10):4113–4129CrossRef Satasivam S, Bai Y (2016) Mechanical performance of FRP-steel composite beams for building construction. Mater Struct 49(10):4113–4129CrossRef
8.
Zurück zum Zitat Alagusundaramoorthy P, Harik IE, Choo CC (2006) Structural behavior of FRP composite bridge deck panels. J Bridg Eng 11:384–393CrossRef Alagusundaramoorthy P, Harik IE, Choo CC (2006) Structural behavior of FRP composite bridge deck panels. J Bridg Eng 11:384–393CrossRef
9.
Zurück zum Zitat Johnson AF, Sims GD, Ajibade F (1990) Performance analysis of web-core composite sandwich panels. Composites 21:319–324CrossRef Johnson AF, Sims GD, Ajibade F (1990) Performance analysis of web-core composite sandwich panels. Composites 21:319–324CrossRef
10.
Zurück zum Zitat Jeong J, Lee Y-H, Park K-T, Hwang Y-K (2007) Field and laboratory performance of a rectangular shaped glass fiber reinforced polymer deck. Compos Struct 81:622–628CrossRef Jeong J, Lee Y-H, Park K-T, Hwang Y-K (2007) Field and laboratory performance of a rectangular shaped glass fiber reinforced polymer deck. Compos Struct 81:622–628CrossRef
11.
Zurück zum Zitat Foster DC, Richards D, Bogner BR (2000) Design and installation of fiber-reinforced polymer composite bridge. J Compos Constr 4:33–37CrossRef Foster DC, Richards D, Bogner BR (2000) Design and installation of fiber-reinforced polymer composite bridge. J Compos Constr 4:33–37CrossRef
12.
Zurück zum Zitat Turner MK, Harries KA, Petrou MF, Rizos D (2004) In situ structural evaluation of a GFRP bridge deck system. Compos Struct 65:157–165CrossRef Turner MK, Harries KA, Petrou MF, Rizos D (2004) In situ structural evaluation of a GFRP bridge deck system. Compos Struct 65:157–165CrossRef
13.
Zurück zum Zitat Zi G, Kim BM, Hwang YK, Lee YH (2008) An experimental study on static behavior of a GFRP bridge deck filled with a polyurethane foam. Compos Struct 82:257–268CrossRef Zi G, Kim BM, Hwang YK, Lee YH (2008) An experimental study on static behavior of a GFRP bridge deck filled with a polyurethane foam. Compos Struct 82:257–268CrossRef
14.
Zurück zum Zitat Park K-T, Kim S-H, Lee Y-H, Hwang Y-K (2005) Pilot test on a developed GFRP bridge deck. Compos Struct 70:48–59CrossRef Park K-T, Kim S-H, Lee Y-H, Hwang Y-K (2005) Pilot test on a developed GFRP bridge deck. Compos Struct 70:48–59CrossRef
15.
Zurück zum Zitat Zi G, Kim BM, Hwang YK, Lee YH (2008) The static behavior of a modular foam-filled GFRP bridge deck with a strong web-flange joint. Compos Struct 85:155–163CrossRef Zi G, Kim BM, Hwang YK, Lee YH (2008) The static behavior of a modular foam-filled GFRP bridge deck with a strong web-flange joint. Compos Struct 85:155–163CrossRef
16.
Zurück zum Zitat Keller T, Gürtler H (2006) In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders. Compos Struct 72:151–162CrossRef Keller T, Gürtler H (2006) In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders. Compos Struct 72:151–162CrossRef
17.
Zurück zum Zitat Keller T, Gürtler H (2005) Composite action and adhesive bond between fiber-reinforced polymer bridge decks and main girders. J Compos Constr 9:360–368CrossRef Keller T, Gürtler H (2005) Composite action and adhesive bond between fiber-reinforced polymer bridge decks and main girders. J Compos Constr 9:360–368CrossRef
18.
Zurück zum Zitat Keller T, Bai Y, Vallée T (2007) Long-term performance of a glass fiber-reinforced polymer truss bridge. J Compos Constr 11:99–108CrossRef Keller T, Bai Y, Vallée T (2007) Long-term performance of a glass fiber-reinforced polymer truss bridge. J Compos Constr 11:99–108CrossRef
19.
Zurück zum Zitat Berman J, Brown D (2010) Field monitoring and repair of a glass fiber-reinforced polymer bridge deck. J Perform Constr Facil 24:215–222CrossRef Berman J, Brown D (2010) Field monitoring and repair of a glass fiber-reinforced polymer bridge deck. J Perform Constr Facil 24:215–222CrossRef
20.
Zurück zum Zitat Hong T, Hastak M (2006) Construction, inspection, and maintenance of FRP deck panels. J Compos Constr 10:561–572CrossRef Hong T, Hastak M (2006) Construction, inspection, and maintenance of FRP deck panels. J Compos Constr 10:561–572CrossRef
21.
Zurück zum Zitat Sotiropoulos SN, GangaRao HVS, Mongi ANK (1994) Theoretical and experimental evaluation of FRP components and systems. J Struct Eng 120:464–485CrossRef Sotiropoulos SN, GangaRao HVS, Mongi ANK (1994) Theoretical and experimental evaluation of FRP components and systems. J Struct Eng 120:464–485CrossRef
22.
Zurück zum Zitat Gao Y, Chen J, Zhang Z, Fox D (2013) An advanced FRP floor panel system in buildings. Compos Struct 96:683–690CrossRef Gao Y, Chen J, Zhang Z, Fox D (2013) An advanced FRP floor panel system in buildings. Compos Struct 96:683–690CrossRef
23.
Zurück zum Zitat Evernden M, Mottram J (2012) A case for houses to be constructed of fibre reinforced polymer components. Proc ICE - Constr Mater 165(1):3–13CrossRef Evernden M, Mottram J (2012) A case for houses to be constructed of fibre reinforced polymer components. Proc ICE - Constr Mater 165(1):3–13CrossRef
24.
Zurück zum Zitat Hutchinson J, Hartley J (2011) STARTLINK lightweight building systems—wholly polymeric structures. In: Whysell C, Halliwell S, Mottram J (eds) Advanced composites in construction (ACIC). University of Warwick Hutchinson J, Hartley J (2011) STARTLINK lightweight building systems—wholly polymeric structures. In: Whysell C, Halliwell S, Mottram J (eds) Advanced composites in construction (ACIC). University of Warwick
25.
Zurück zum Zitat Dawood M, Taylor E, Rizkalla S (2010) Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions. Compos Struct 92(4):950–963CrossRef Dawood M, Taylor E, Rizkalla S (2010) Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions. Compos Struct 92(4):950–963CrossRef
26.
Zurück zum Zitat Keller T, Kenel A, Koppitz R (2013) Carbon fiber-reinforced polymer punching reinforcement and strengthening of concrete flat slabs. ACI Struct J 110(6):919–927 Keller T, Kenel A, Koppitz R (2013) Carbon fiber-reinforced polymer punching reinforcement and strengthening of concrete flat slabs. ACI Struct J 110(6):919–927
27.
Zurück zum Zitat ASTM. D3171 (2011) Standard test methods for constituent content of composite materials. West Conshohocken, United States ASTM. D3171 (2011) Standard test methods for constituent content of composite materials. West Conshohocken, United States
28.
Zurück zum Zitat ASTM. D3039 (2000) Standard test method for tensile properties of polymer matrix composite materials.West Conshohocken, United States ASTM. D3039 (2000) Standard test method for tensile properties of polymer matrix composite materials.West Conshohocken, United States
29.
Zurück zum Zitat ASTM. D2344 (2000) Standard test method for short-beam strength of polymer matrix composite materials and their laminates. West Conshohocken, United States ASTM. D2344 (2000) Standard test method for short-beam strength of polymer matrix composite materials and their laminates. West Conshohocken, United States
30.
Zurück zum Zitat Chamis CC, Sinclair JH (1977) Ten-deg off-axis test for shear properties in fiber composites. Exp Mech 17:339–346CrossRef Chamis CC, Sinclair JH (1977) Ten-deg off-axis test for shear properties in fiber composites. Exp Mech 17:339–346CrossRef
31.
Zurück zum Zitat Fawzia S, Zhao XL, Al-Mahaidi R (2010) Bond-slip models for double strap joints strengthened by CFRP. Compos Struct 92:2137–2145CrossRef Fawzia S, Zhao XL, Al-Mahaidi R (2010) Bond-slip models for double strap joints strengthened by CFRP. Compos Struct 92:2137–2145CrossRef
33.
Zurück zum Zitat Clarke JL (1996) Structural design of polymer composites: Eurocomp design code and handbook. Spon, New York Clarke JL (1996) Structural design of polymer composites: Eurocomp design code and handbook. Spon, New York
34.
Zurück zum Zitat Pecce M, Cosenza E (2000) Local buckling curves for the design of FRP profiles. Thin-Walled Struct 37:207–222CrossRef Pecce M, Cosenza E (2000) Local buckling curves for the design of FRP profiles. Thin-Walled Struct 37:207–222CrossRef
35.
Zurück zum Zitat Bai Y, Keller T, Wu C (2013) Pre-buckling and post-buckling failure at web-flange junction of pultruded GFRP beams. Mater Struct 46:1143–1154CrossRef Bai Y, Keller T, Wu C (2013) Pre-buckling and post-buckling failure at web-flange junction of pultruded GFRP beams. Mater Struct 46:1143–1154CrossRef
36.
Zurück zum Zitat Qiao P, Shan L (2005) Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes. Compos Struct 70:468–483CrossRef Qiao P, Shan L (2005) Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes. Compos Struct 70:468–483CrossRef
37.
Zurück zum Zitat Kollár L (2003) Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections. J Struct Eng 129:1503–1513CrossRef Kollár L (2003) Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections. J Struct Eng 129:1503–1513CrossRef
38.
Zurück zum Zitat Goodman JR, Popov EP (1968) Layered beam systems with interlayer slip. J Struct Div 94:2535–2548CrossRef Goodman JR, Popov EP (1968) Layered beam systems with interlayer slip. J Struct Div 94:2535–2548CrossRef
39.
Zurück zum Zitat CEN. Eurocode 5 (2004) Design of timber structures. Brussels: European Committee for Standardisation (CEN). London, British CEN. Eurocode 5 (2004) Design of timber structures. Brussels: European Committee for Standardisation (CEN). London, British
40.
Zurück zum Zitat Keller T, Gürtler H (2006) Design of hybrid bridge girders with adhesively bonded and compositely acting FRP deck. Compos Struct 74:202–212CrossRef Keller T, Gürtler H (2006) Design of hybrid bridge girders with adhesively bonded and compositely acting FRP deck. Compos Struct 74:202–212CrossRef
41.
Zurück zum Zitat Porteous J, Kermani A (2013) Structural timber design to Eurocode 5, 2nd ed. Wiley-Blackwell, Sussex 28(5) Porteous J, Kermani A (2013) Structural timber design to Eurocode 5, 2nd ed. Wiley-Blackwell, Sussex 28(5)
42.
Zurück zum Zitat Clouston P, Bathon L, Schreyer A (2005) Shear and bending performance of a novel wood–concrete composite system. J Struct Eng 131:1404–1412CrossRef Clouston P, Bathon L, Schreyer A (2005) Shear and bending performance of a novel wood–concrete composite system. J Struct Eng 131:1404–1412CrossRef
43.
Zurück zum Zitat Wu C, Feng P, Bai Y (2015) Comparative study on static and fatigue performances of pultruded GFRP joints using ordinary and blind bolts. J Compos Constr 19(4):04014065CrossRef Wu C, Feng P, Bai Y (2015) Comparative study on static and fatigue performances of pultruded GFRP joints using ordinary and blind bolts. J Compos Constr 19(4):04014065CrossRef
Metadaten
Titel
Fibre Reinforced Polymer Composites Two-Way Slabs
verfasst von
Sindu Satasivam
Yu Bai
Yue Yang
Lei Zhu
Xiao-Ling Zhao
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-4278-5_3