Skip to main content
Erschienen in: Metal Science and Heat Treatment 11-12/2018

12.04.2018 | SIMULATION

Finite-Element Analysis of Residual Stresses Generated Under Nitriding Process: a Three-Dimensional Model

verfasst von: J. Sawicki, P. Siedlaczek, A. Staszczyk

Erschienen in: Metal Science and Heat Treatment | Ausgabe 11-12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical three-dimensional model for computing residual stresses generated in cross section of steel 42CrMo4 after nitriding is presented. The diffusion process is analyzed by the finite-element method. The internal stresses are computed using the obtained profile of the distribution of the nitrogen concentration. The special features of the intricate geometry of the treated articles including edges and angles are considered. Comparative analysis of the results of the simulation and of the experimental measurement of residual stresses is performed by the Waisman–Philips method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Brinksmeiera, J. Cammettb, W, Konigc et al., “Residual stresses – measurement and causes in machining processes,” CIRP Annals – Manuf. Technol., 31(2), 491 – 510 (1982). E. Brinksmeiera, J. Cammettb, W, Konigc et al., “Residual stresses – measurement and causes in machining processes,” CIRP Annals – Manuf. Technol., 31(2), 491 – 510 (1982).
2.
Zurück zum Zitat J. L. Christopher and D. A. Lados, “Effect of processing residual stresses on fatigue crack growth behavior of structural materials: Experimental approaches and microstructural mechanisms,” Metall. Mater. Trans., 43A(1), 87 – 107 (2012). J. L. Christopher and D. A. Lados, “Effect of processing residual stresses on fatigue crack growth behavior of structural materials: Experimental approaches and microstructural mechanisms,” Metall. Mater. Trans., 43A(1), 87 – 107 (2012).
3.
Zurück zum Zitat G. A. Webster, “Role of residual stresses in engineering applications,” Mater. Sci. Forum, 347 – 349, 1 – 11 (2000). G. A. Webster, “Role of residual stresses in engineering applications,” Mater. Sci. Forum, 347349, 1 – 11 (2000).
4.
Zurück zum Zitat J. Sawicki, M. Gorecki, Ł. Kaczmarek, et al., “Increasing the durability of pressure dies by modern surface treatment methods,” Chiang Mai J. Sci., 40(5), 886 – 897 (2013). J. Sawicki, M. Gorecki, Ł. Kaczmarek, et al., “Increasing the durability of pressure dies by modern surface treatment methods,” Chiang Mai J. Sci., 40(5), 886 – 897 (2013).
5.
Zurück zum Zitat J. Sawicki, M. Dudek, L. Kaczmarek, et al., “Numerical analysis of thermal stresses in carbon films obtained by RF PECVP method on surface of cannulated screw,” Arch. Metall. Mater., 58(1), 77 – 81 (2013).CrossRef J. Sawicki, M. Dudek, L. Kaczmarek, et al., “Numerical analysis of thermal stresses in carbon films obtained by RF PECVP method on surface of cannulated screw,” Arch. Metall. Mater., 58(1), 77 – 81 (2013).CrossRef
6.
Zurück zum Zitat R. Mukai, T. Matsumoto, D. Ju, et al., “Modeling of numerical simulation and experimental verification for carburizing-nitriding quenching process,” Trans. Nonfer. Met. Soc. China, 16, Suppl. 2, 566 – 671 (2006). R. Mukai, T. Matsumoto, D. Ju, et al., “Modeling of numerical simulation and experimental verification for carburizing-nitriding quenching process,” Trans. Nonfer. Met. Soc. China, 16, Suppl. 2, 566 – 671 (2006).
7.
Zurück zum Zitat S. Lee, D. K. Matlock, and C. J. Van Tyne, “Comparison of two finite element simulation codes used to model the carburizing of steel,” Comput. Mater. Sci., 68, 47 – 54 (2013).CrossRef S. Lee, D. K. Matlock, and C. J. Van Tyne, “Comparison of two finite element simulation codes used to model the carburizing of steel,” Comput. Mater. Sci., 68, 47 – 54 (2013).CrossRef
8.
Zurück zum Zitat S. Naidoo Lingamanaik, B. K. Chen, and P. Palanisamy, “Finite element analysis on the formation and distribution of residual stresses during quenching of low carbon bainitic-martensitic large gears,” Comput. Mater. Sci., 79, 627 – 633 (2013).CrossRef S. Naidoo Lingamanaik, B. K. Chen, and P. Palanisamy, “Finite element analysis on the formation and distribution of residual stresses during quenching of low carbon bainitic-martensitic large gears,” Comput. Mater. Sci., 79, 627 – 633 (2013).CrossRef
9.
Zurück zum Zitat R. M. Nejad, “Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels,” Eng. Failure Anal., 45, 449 – 455 (2014).CrossRef R. M. Nejad, “Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels,” Eng. Failure Anal., 45, 449 – 455 (2014).CrossRef
10.
Zurück zum Zitat V. Leskovsek, B. Podgornik, and D. Nolan, “Modeling of residual stress profiles in plasma nitrided tool steel,” Mater. Charact., 59, 454 – 461 (2008).CrossRef V. Leskovsek, B. Podgornik, and D. Nolan, “Modeling of residual stress profiles in plasma nitrided tool steel,” Mater. Charact., 59, 454 – 461 (2008).CrossRef
11.
Zurück zum Zitat A. Da Silva Rocha, T. Strohaecker, V. Tomala, and T. Hirsch, “Microstructure and residual stresses of a plasma-nitrided M2 tool steel,” Surf. Coat. Technol., 115, 24 – 31 (1999).CrossRef A. Da Silva Rocha, T. Strohaecker, V. Tomala, and T. Hirsch, “Microstructure and residual stresses of a plasma-nitrided M2 tool steel,” Surf. Coat. Technol., 115, 24 – 31 (1999).CrossRef
12.
Zurück zum Zitat S. S. Akhtar, A. F. M. Arif, and B. S. Yilbas, “Influence of multiple nitriding on the case hardening of H13 tool model: Experimental and numerical investigation,” Int. J. Adv. Manuf. Technol., 58(1 – 4), 7 – 70 (2012). S. S. Akhtar, A. F. M. Arif, and B. S. Yilbas, “Influence of multiple nitriding on the case hardening of H13 tool model: Experimental and numerical investigation,” Int. J. Adv. Manuf. Technol., 58(1 – 4), 7 – 70 (2012).
13.
Zurück zum Zitat M. Yang and R. D. Sisson Jr, “Modeling the nitriding process of steels,” Adv. Mater. Proc., 170(7), 33 – 36 (2012). M. Yang and R. D. Sisson Jr, “Modeling the nitriding process of steels,” Adv. Mater. Proc., 170(7), 33 – 36 (2012).
14.
Zurück zum Zitat M. Yang, C. Zimmerman, D. Donahue, and R. D. Sisson Jr, “Modeling the gas nitriding process of low alloy steels,” J. Mater. Eng. Perform., 22(7), 1892 – 1898 (2013).CrossRef M. Yang, C. Zimmerman, D. Donahue, and R. D. Sisson Jr, “Modeling the gas nitriding process of low alloy steels,” J. Mater. Eng. Perform., 22(7), 1892 – 1898 (2013).CrossRef
15.
Zurück zum Zitat S. M. Hassani-Gangaraj and M. Guagliano, “Microstructural evolution during nitriding, finite element simulation and experimental assessment,” Appl. Surf. Sci., 271, 156 – 163 (2013).CrossRef S. M. Hassani-Gangaraj and M. Guagliano, “Microstructural evolution during nitriding, finite element simulation and experimental assessment,” Appl. Surf. Sci., 271, 156 – 163 (2013).CrossRef
16.
Zurück zum Zitat P. Cavaliere, G. Zavarise, and M. Perillo, “Modeling of the carburizing and nitriding processes,” Comp. Mater. Sci., 46(1), 26 – 35 (2009).CrossRef P. Cavaliere, G. Zavarise, and M. Perillo, “Modeling of the carburizing and nitriding processes,” Comp. Mater. Sci., 46(1), 26 – 35 (2009).CrossRef
17.
Zurück zum Zitat P. Buchhagen and T. Bell, “Simulation of the residual stress development in the diffusion layer of low alloy plasma nitrided steels,” Comp. Mater. Sci., 7(1 – 2), 228 – 234 (1996).CrossRef P. Buchhagen and T. Bell, “Simulation of the residual stress development in the diffusion layer of low alloy plasma nitrided steels,” Comp. Mater. Sci., 7(1 – 2), 228 – 234 (1996).CrossRef
18.
Zurück zum Zitat P. Depouhon, J. M. Sprauel, M. Mailhé, and E. Mermoz, “Mathematical modeling of residual stresses and distortions induced by gas nitriding of 32CrMoV13 steel,” Comp. Mater. Sci., 82, 178 – 190 (2014).CrossRef P. Depouhon, J. M. Sprauel, M. Mailhé, and E. Mermoz, “Mathematical modeling of residual stresses and distortions induced by gas nitriding of 32CrMoV13 steel,” Comp. Mater. Sci., 82, 178 – 190 (2014).CrossRef
19.
Zurück zum Zitat P. Depouhon, J. M. Sprauel, and E. Mermoz, “Prediction of residual stresses and distortions induced by nitriding of complex 3D industrial parts,” CIRP Annals – Manuf. Technol., 64(1), 553 – 556 (2015).CrossRef P. Depouhon, J. M. Sprauel, and E. Mermoz, “Prediction of residual stresses and distortions induced by nitriding of complex 3D industrial parts,” CIRP Annals – Manuf. Technol., 64(1), 553 – 556 (2015).CrossRef
20.
Zurück zum Zitat J. W. Waisman and A. Phillips, “Experiential stress analysis,” Proc. Soc., XI(2), 102 – 105 (1952). J. W. Waisman and A. Phillips, “Experiential stress analysis,” Proc. Soc., XI(2), 102 – 105 (1952).
21.
Zurück zum Zitat J. Ratajski and T. Suszko, “Modeling of the nitriding process,” J. Mater. Proc. Technol., 195, 212 – 217 (2008).CrossRef J. Ratajski and T. Suszko, “Modeling of the nitriding process,” J. Mater. Proc. Technol., 195, 212 – 217 (2008).CrossRef
22.
Zurück zum Zitat Y. Z. Shen, K. H. Oh, and D. N. Lee, “Nitrogen strengthening of interstitial-free steel by nitriding in potassium nitrate salt bath,” Mater. Sci. Eng., A434, 314 – 318 (2006).CrossRef Y. Z. Shen, K. H. Oh, and D. N. Lee, “Nitrogen strengthening of interstitial-free steel by nitriding in potassium nitrate salt bath,” Mater. Sci. Eng., A434, 314 – 318 (2006).CrossRef
23.
Zurück zum Zitat P. Kula, E. Wolowiec, R. Pietrasik, et al., “Non-steady state approach to the vacuum nitriding of tools,” Vacuum, 88, 1 – 7 (2013).CrossRef P. Kula, E. Wolowiec, R. Pietrasik, et al., “Non-steady state approach to the vacuum nitriding of tools,” Vacuum, 88, 1 – 7 (2013).CrossRef
Metadaten
Titel
Finite-Element Analysis of Residual Stresses Generated Under Nitriding Process: a Three-Dimensional Model
verfasst von
J. Sawicki
P. Siedlaczek
A. Staszczyk
Publikationsdatum
12.04.2018
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 11-12/2018
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0229-y

Weitere Artikel der Ausgabe 11-12/2018

Metal Science and Heat Treatment 11-12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.