Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

16.11.2018

Finite Element Method for Two-Sided Fractional Differential Equations with Variable Coefficients: Galerkin Approach

verfasst von: Zhaopeng Hao, Moongyu Park, Guang Lin, Zhiqiang Cai

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper develops a Galerkin approach for two-sided fractional differential equations with variable coefficients. By the product rule, we transform the problem into an equivalent formulation which additionally introduces the fractional low-order term. We prove the existence and uniqueness of the solutions of the Dirichlet problems of the equations with certain diffusion coefficients. We adopt the Galerkin formulation, and prove its error estimates. Finally, several numerical examples are provided to illustrate the fidelity and accuracy of the proposed theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adams, R.A., Fournier, J.F.: Sobolev Spaces. Academic Press, New York (2003)MATH Adams, R.A., Fournier, J.F.: Sobolev Spaces. Academic Press, New York (2003)MATH
2.
Zurück zum Zitat Benson, D.A., Tadjeran, C., Meerschaert, M.M., Farnham, I., Pohll, G.: Radial fractional-order dispersion through fractured rock. Water Resour. Res. 40, 1–9 (2004)CrossRef Benson, D.A., Tadjeran, C., Meerschaert, M.M., Farnham, I., Pohll, G.: Radial fractional-order dispersion through fractured rock. Water Resour. Res. 40, 1–9 (2004)CrossRef
3.
Zurück zum Zitat Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Levy motion, and the made tracer tests. Transp. Porous Media 42, 211–240 (2001)MathSciNetCrossRef Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Levy motion, and the made tracer tests. Transp. Porous Media 42, 211–240 (2001)MathSciNetCrossRef
4.
Zurück zum Zitat Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)CrossRefMATH Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)CrossRefMATH
5.
Zurück zum Zitat Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle travers in plasma turbulence models. Phys. Plasma 8, 5096–5103 (2001)CrossRef Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle travers in plasma turbulence models. Phys. Plasma 8, 5096–5103 (2001)CrossRef
6.
Zurück zum Zitat Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equatioins. SIAM J. Numer. Anal. 52(3), 1418–1438 (2014)MathSciNetCrossRefMATH Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equatioins. SIAM J. Numer. Anal. 52(3), 1418–1438 (2014)MathSciNetCrossRefMATH
7.
Zurück zum Zitat De Nápoli, P.L., Drelichman, I.: Elementary proofs of embedding theorems for potential spaces of radial functions. In: Ruzhansky, M., Tikhonov, S. (eds.) Methods of Fourier Analysis and Approximation Theory. Applied and Numerical Harmonic Analysis, pp. 115–138. Birkhauser, Cham (2016)CrossRef De Nápoli, P.L., Drelichman, I.: Elementary proofs of embedding theorems for potential spaces of radial functions. In: Ruzhansky, M., Tikhonov, S. (eds.) Methods of Fourier Analysis and Approximation Theory. Applied and Numerical Harmonic Analysis, pp. 115–138. Birkhauser, Cham (2016)CrossRef
8.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRefMATH Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)MathSciNetCrossRefMATH Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)CrossRefMATH Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)CrossRefMATH
13.
Zurück zum Zitat Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)CrossRef Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)CrossRef
14.
Zurück zum Zitat Li, X., Xu, C.: The existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNetMATH Li, X., Xu, C.: The existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNetMATH
15.
Zurück zum Zitat Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefMATH Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006) Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)
17.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Phys. 172, 65–77 (2004)MathSciNetMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Phys. 172, 65–77 (2004)MathSciNetMATH
18.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
20.
Zurück zum Zitat Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–27 (2002)MathSciNet Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–27 (2002)MathSciNet
21.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)MATH
22.
Zurück zum Zitat Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection–dispersion equation. J. Contam. Hydrol. 48(1), 69–88 (2001)CrossRef Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection–dispersion equation. J. Contam. Hydrol. 48(1), 69–88 (2001)CrossRef
23.
Zurück zum Zitat Shlesinger, M.F., West, B.J., Klafter, J.: Levy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)MathSciNetCrossRef Shlesinger, M.F., West, B.J., Klafter, J.: Levy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)MathSciNetCrossRef
24.
Zurück zum Zitat Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205–213 (2006)MathSciNetCrossRefMATH Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205–213 (2006)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51(2), 1088–1107 (2013)MathSciNetCrossRefMATH Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51(2), 1088–1107 (2013)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MathSciNetCrossRefMATH Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Wang, H., Wang, K.: An \(O(N \log ^2 N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MathSciNetCrossRefMATH Wang, H., Wang, K.: An \(O(N \log ^2 N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Wang, H., Yang, D., Zhu, S.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)MathSciNetCrossRefMATH Wang, H., Yang, D., Zhu, S.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection diffusion equations. SIAM J. Numer. Anal. 52, 405–423 (2014)MathSciNetCrossRefMATH Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection diffusion equations. SIAM J. Numer. Anal. 52, 405–423 (2014)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Yang, D.P., Wang, H.: Wellposedness and regularity of steady-state two-sided variable-coefficient conservative space-fractional diffusion equations (2016). arXiv:1606.04912 [math.NA] Yang, D.P., Wang, H.: Wellposedness and regularity of steady-state two-sided variable-coefficient conservative space-fractional diffusion equations (2016). arXiv:​1606.​04912 [math.NA]
32.
Zurück zum Zitat Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48, 1683–1694 (1993)MathSciNetCrossRef Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48, 1683–1694 (1993)MathSciNetCrossRef
Metadaten
Titel
Finite Element Method for Two-Sided Fractional Differential Equations with Variable Coefficients: Galerkin Approach
verfasst von
Zhaopeng Hao
Moongyu Park
Guang Lin
Zhiqiang Cai
Publikationsdatum
16.11.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0869-5

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe

Premium Partner