Skip to main content

2024 | OriginalPaper | Buchkapitel

Finite Element Simulation of Tunnel Defect in Friction Stir Welding of Pure Copper: Effect of Tool Geometry

verfasst von : Debtanay Das, Swarup Bag, Sukhomay Pal

Erschienen in: Advances in Mechanical Engineering and Material Science

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current work describes the development of a numerical model to accurately predict the occurrence of various defects during FSW of pure copper using thermomechanical responses. The developed numerical model examines the effect of varying tool dimensions on thermomechanical responses and defect formation. The tool traverse and rotation speed are kept constant at 30 mm/min and 1200 rpm. The shoulder diameter is varied between 14 and 28 mm. The 14 mm tool produces an imperfect weld with surface and sub-surface tunnel defects, whereas the 18 mm tool eliminates the surface tunnel defect. An increase of the shoulder diameter to 28 mm further reduces the extent of sub-surface tunnel defect. The increase in the shoulder diameter eliminates the surface tunnel and reduces the height of the sub-surface tunnel by about 50%. Significant material velocity, strain rate, and temperature on the retreating side (RS) produces the sub-surface tunnel defect on the advancing side (AS). The model can predict the initiation and advancement of the tunnel defect along the welding length. The velocity profile indicates that the material is equally distributed between the AS and RS behind the tool at the conclusion of the dwell stage. Alternatively, the material deposition becomes unequal between the AS and RS as the tool starts traversing. The tool–workpiece interface observes less stress and alternatively high strain, strain rate, and velocity distribution compared to the rest of the workpiece.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sahlot P, Singh AK, Badheka VJ, Arora A (2019) Friction stir welding of copper: numerical modeling and validation. Trans Indian Inst Met 72:1339–1347CrossRef Sahlot P, Singh AK, Badheka VJ, Arora A (2019) Friction stir welding of copper: numerical modeling and validation. Trans Indian Inst Met 72:1339–1347CrossRef
2.
Zurück zum Zitat Lin JW, Chang HC, Wu MH (2014) Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding. J Manuf Process 16:296–304CrossRef Lin JW, Chang HC, Wu MH (2014) Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding. J Manuf Process 16:296–304CrossRef
3.
Zurück zum Zitat Lee WB, Jung SB (2004) The joint properties of copper by friction stir welding. Mater Lett 58:1041–1046CrossRef Lee WB, Jung SB (2004) The joint properties of copper by friction stir welding. Mater Lett 58:1041–1046CrossRef
4.
Zurück zum Zitat Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78CrossRef Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78CrossRef
5.
Zurück zum Zitat Zhang Z, Zhang HW (2009) Numerical studies on controlling of process parameters in friction stir welding. J Mater Process Technol 209:241–270CrossRef Zhang Z, Zhang HW (2009) Numerical studies on controlling of process parameters in friction stir welding. J Mater Process Technol 209:241–270CrossRef
6.
Zurück zum Zitat Xue P, Xie GM, Xiao BL, Ma ZY, Geng L (2010) Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metall Mater Trans A Phys Metall Mater Sci 41:2010–2021 Xue P, Xie GM, Xiao BL, Ma ZY, Geng L (2010) Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metall Mater Trans A Phys Metall Mater Sci 41:2010–2021
7.
Zurück zum Zitat Shen JJ, Liu HJ, Cui F (2010) Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater Des 31:3937–3942CrossRef Shen JJ, Liu HJ, Cui F (2010) Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater Des 31:3937–3942CrossRef
8.
Zurück zum Zitat Sakthivel T, Mukhopadhyay J (2007) Microstructure and mechanical properties of friction stir welded copper. J Mater Sci 42:8126–8129CrossRef Sakthivel T, Mukhopadhyay J (2007) Microstructure and mechanical properties of friction stir welded copper. J Mater Sci 42:8126–8129CrossRef
9.
Zurück zum Zitat Farrokhi H, Heidarzadeh A, Saeid T (2013) Frictions stir welding of copper under different welding parameters and media. Sci Technol Weld Join 18:697–702CrossRef Farrokhi H, Heidarzadeh A, Saeid T (2013) Frictions stir welding of copper under different welding parameters and media. Sci Technol Weld Join 18:697–702CrossRef
10.
Zurück zum Zitat Arora A, De A, Debroy T (2011) Toward optimum friction stir welding tool shoulder diameter. Scr Mater 64:9–12CrossRef Arora A, De A, Debroy T (2011) Toward optimum friction stir welding tool shoulder diameter. Scr Mater 64:9–12CrossRef
11.
Zurück zum Zitat Mehta M, Arora A, De A, Debroy T (2011) Tool geometry for friction stir welding - Optimum shoulder diameter. Metall Mater Trans A Phys Metall Mater Sci 42:2716–2722 Mehta M, Arora A, De A, Debroy T (2011) Tool geometry for friction stir welding - Optimum shoulder diameter. Metall Mater Trans A Phys Metall Mater Sci 42:2716–2722
12.
Zurück zum Zitat Khodaverdizadeh H, Heidarzadeh A, Saeid T (2013) Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater Des 45:265–270CrossRef Khodaverdizadeh H, Heidarzadeh A, Saeid T (2013) Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater Des 45:265–270CrossRef
13.
Zurück zum Zitat Kumar A, Raju LS (2012) Influence of tool pin profiles on friction stir welding of copper. Mater Manuf Process 27:1414–1418CrossRef Kumar A, Raju LS (2012) Influence of tool pin profiles on friction stir welding of copper. Mater Manuf Process 27:1414–1418CrossRef
14.
Zurück zum Zitat Akbari M, Ezzati M, Asadi P (2022) Investigation of the effect of tool probe profile on reinforced particles distribution using experimental and CEL approaches. Int J Light Mater Manuf 5:213–223 Akbari M, Ezzati M, Asadi P (2022) Investigation of the effect of tool probe profile on reinforced particles distribution using experimental and CEL approaches. Int J Light Mater Manuf 5:213–223
15.
Zurück zum Zitat Das D, Bag S, Pal S (2021) Investigating surface defect by tool-material interaction in friction stir welding using coupled Eulerian-Lagrangian approach. Manuf Lett 30:23–26CrossRef Das D, Bag S, Pal S (2021) Investigating surface defect by tool-material interaction in friction stir welding using coupled Eulerian-Lagrangian approach. Manuf Lett 30:23–26CrossRef
16.
Zurück zum Zitat Al-Badour F, Merah N, Shuaib A, Bazoune A (2014) Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int J Adv Manuf Technol 72:607–617CrossRef Al-Badour F, Merah N, Shuaib A, Bazoune A (2014) Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int J Adv Manuf Technol 72:607–617CrossRef
17.
Zurück zum Zitat Pashazadeh H, Masoumi A, Teimournezhad J (2013) Numerical modelling for the hardness evaluation of friction stir welded copper metals. Mater Des 49:913–921CrossRef Pashazadeh H, Masoumi A, Teimournezhad J (2013) Numerical modelling for the hardness evaluation of friction stir welded copper metals. Mater Des 49:913–921CrossRef
18.
Zurück zum Zitat Patel NP, Parlikar P, Singh Dhari R, Mehta K, Pandya M (2019) Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. J Manuf Process 47:98–109CrossRef Patel NP, Parlikar P, Singh Dhari R, Mehta K, Pandya M (2019) Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. J Manuf Process 47:98–109CrossRef
19.
Zurück zum Zitat Gotawala N, Shrivastava A (2020) Analysis of material distribution in dissimilar friction stir welded joints of Al 1050 and copper. J Manuf Process 57:725–736CrossRef Gotawala N, Shrivastava A (2020) Analysis of material distribution in dissimilar friction stir welded joints of Al 1050 and copper. J Manuf Process 57:725–736CrossRef
20.
Zurück zum Zitat Aliha MRM, Kalantari MH, Ghoreishi SMN, Torabi AR, Etesam S (2019) Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints. Theor Appl Fract Mech 103:102243CrossRef Aliha MRM, Kalantari MH, Ghoreishi SMN, Torabi AR, Etesam S (2019) Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints. Theor Appl Fract Mech 103:102243CrossRef
21.
Zurück zum Zitat Das D, Bag S, Pal S, Ruhul Amin M (2020) Prediction of surface profile in friction stir welding using coupled eulerian and lagrangian method. In: ASME international mechanical engineering congress and exposition, proceedings (IMECE). p V011T11A035. ASME Das D, Bag S, Pal S, Ruhul Amin M (2020) Prediction of surface profile in friction stir welding using coupled eulerian and lagrangian method. In: ASME international mechanical engineering congress and exposition, proceedings (IMECE). p V011T11A035. ASME
22.
Zurück zum Zitat Akbari M, Asadi P, Behnagh RA (2021) Modeling of material flow in dissimilar friction stir lap welding of aluminum and brass using coupled Eulerian and Lagrangian method. Int J Adv Manuf Technol 113:721–734CrossRef Akbari M, Asadi P, Behnagh RA (2021) Modeling of material flow in dissimilar friction stir lap welding of aluminum and brass using coupled Eulerian and Lagrangian method. Int J Adv Manuf Technol 113:721–734CrossRef
23.
Zurück zum Zitat Ragab M, Liu H, Yang GJ, Ahmed MMZ (2021) Friction stir welding of 1Cr11Ni2W2MoV martensitic stainless steel: numerical simulation based on coupled Eulerian Lagrangian approach supported with experimental work. Appl Sci 11:1–18CrossRef Ragab M, Liu H, Yang GJ, Ahmed MMZ (2021) Friction stir welding of 1Cr11Ni2W2MoV martensitic stainless steel: numerical simulation based on coupled Eulerian Lagrangian approach supported with experimental work. Appl Sci 11:1–18CrossRef
24.
Zurück zum Zitat Neto DM, Neto P (2013) Numerical modeling of friction stir welding process: a literature review. Int J Adv Manuf Technol 65:115–126CrossRef Neto DM, Neto P (2013) Numerical modeling of friction stir welding process: a literature review. Int J Adv Manuf Technol 65:115–126CrossRef
25.
Zurück zum Zitat Das D, Bag S, Pal S, Ruhul Amin M (2021) A finite element model for the prediction of chip formation and surface morphology in friction stir welding process. J Manuf Sci Eng 144:041015CrossRef Das D, Bag S, Pal S, Ruhul Amin M (2021) A finite element model for the prediction of chip formation and surface morphology in friction stir welding process. J Manuf Sci Eng 144:041015CrossRef
26.
Zurück zum Zitat Wen Q, Li WY, Gao YJ, Yang J, Wang FF (2019) Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy. Int J Adv Manuf Technol 100:2679–2687CrossRef Wen Q, Li WY, Gao YJ, Yang J, Wang FF (2019) Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy. Int J Adv Manuf Technol 100:2679–2687CrossRef
27.
Zurück zum Zitat Das D, Bag S, Pal S, Sharma A (2023) Material Defects in friction stir welding through thermos—mechanical simulation : dissimilar materials with tool wear consideration. Materials (Basel). 16:301 (2023) Das D, Bag S, Pal S, Sharma A (2023) Material Defects in friction stir welding through thermos—mechanical simulation : dissimilar materials with tool wear consideration. Materials (Basel). 16:301 (2023)
28.
Zurück zum Zitat Das D, Bag S, Pal S (2021) A finite element model for surface and volumetric defects in the FSW process using a coupled Eulerian-Lagrangian approach. Sci Technol Weld Join 26:412–419CrossRef Das D, Bag S, Pal S (2021) A finite element model for surface and volumetric defects in the FSW process using a coupled Eulerian-Lagrangian approach. Sci Technol Weld Join 26:412–419CrossRef
29.
Zurück zum Zitat Liu H, Zhang J, Xu X, Qi Y, Liu Z, Zhao W (2019) Effects of dislocation density evolution on mechanical behavior of OFHC copper during high-speed machining. Materials (Basel) 12:1–18 Liu H, Zhang J, Xu X, Qi Y, Liu Z, Zhao W (2019) Effects of dislocation density evolution on mechanical behavior of OFHC copper during high-speed machining. Materials (Basel) 12:1–18
30.
Zurück zum Zitat Zhang X, Li L, Pan T, Chen Y, Zhang Y, Li W, Liou F (2020) Additive manufacturing of copper-tool steel dissimilar joining: experimental characterization and thermal modeling. Mater Charact 170:110692CrossRef Zhang X, Li L, Pan T, Chen Y, Zhang Y, Li W, Liou F (2020) Additive manufacturing of copper-tool steel dissimilar joining: experimental characterization and thermal modeling. Mater Charact 170:110692CrossRef
31.
Zurück zum Zitat Malarvizhi S, Balasubramanian V (2012) Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum-AZ31B magnesium alloys. Mater Des 40:453–460CrossRef Malarvizhi S, Balasubramanian V (2012) Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum-AZ31B magnesium alloys. Mater Des 40:453–460CrossRef
32.
Zurück zum Zitat Sevvel P, Jaiganesh V (2015) Effect of tool shoulder diameter to plate thickness ratio on mechanical properties and nugget zone characteristics during FSW of dissimilar mg alloys. Trans Indian Inst Met 68:41–46CrossRef Sevvel P, Jaiganesh V (2015) Effect of tool shoulder diameter to plate thickness ratio on mechanical properties and nugget zone characteristics during FSW of dissimilar mg alloys. Trans Indian Inst Met 68:41–46CrossRef
Metadaten
Titel
Finite Element Simulation of Tunnel Defect in Friction Stir Welding of Pure Copper: Effect of Tool Geometry
verfasst von
Debtanay Das
Swarup Bag
Sukhomay Pal
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-5613-5_24

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.