Skip to main content
Erschienen in: Journal of Electronic Materials 9/2021

29.06.2021 | Original Research Article

First-Principles Study on Structural, Electronic, Elastic, Phonon, and Thermodynamic Properties of Tungsten Oxide-Based Perovskite NaWO3

verfasst von: C. Çoban

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural, electronic, elastic, phonon, and thermodynamic properties of the cubic perovskite structure of the NaWO3 compound were calculated from first-principles studies based on density functional theory (DFT). These properties were computed within localized density approximation (LDA). The lattice constant (a) and bulk modulus (B) for NaWO3 are found as 3.857 Å, 225.314 GPa, respectively. The band structure displayed that the NaWO3 compound exhibits metallic behavior at zero pressure. For elastic properties, elastic constants (Cij), isotropic shear modulus (G), Young’s modulus (Y), Poisson’s ratio (\(v\)), and anisotropy factor (A) were studied. At zero pressure, the calculated C11, C12, and C44 are 558.933, 88.681, and 66.245 GPa, respectively. According to the results, NaWO3 is mechanically stable. A is not equal to 1. This reveals that NaWO3 is an anisotropic compound. Because of the Cauchy pressure and B/G ratio, NaWO3 behaves ductilely. The shear constants (C12 and C44) are less sensitive to pressure than C11 which indicates little resistance to shear deformation. The negative phonon frequencies were observed in phonon dispersion curves. Therefore, NaWO3 is dynamically unstable. Finally, heat capacity (CV), entropy (S), and Helmholtz-free energy (F) were also calculated and discussed at 0–1000 K. Consequently, NaWO3 is a potential candidate for future new device designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Murtaza, R. Khenata, M.N. Khalid, and S. Naeem, Phys. B 410, 131 (2013).CrossRef G. Murtaza, R. Khenata, M.N. Khalid, and S. Naeem, Phys. B 410, 131 (2013).CrossRef
2.
3.
Zurück zum Zitat M. Musa, H.E. Saad J. Sci. Adv. Mater. Dev. 2, 115 (2017) M. Musa, H.E. Saad J. Sci. Adv. Mater. Dev. 2, 115 (2017)
4.
Zurück zum Zitat D. Chenine, Z. Aziz, A. Abbad, B. Bouadjemi, O.K. Youb, T. Lantri, O. Lakel, and S. Bentata, Chinese J. Phys. 55, 2514 (2017).CrossRef D. Chenine, Z. Aziz, A. Abbad, B. Bouadjemi, O.K. Youb, T. Lantri, O. Lakel, and S. Bentata, Chinese J. Phys. 55, 2514 (2017).CrossRef
5.
Zurück zum Zitat A.A. Mubarak, and S. Al-Omari, J. Magn. Magn. Mater. 382, 211 (2015).CrossRef A.A. Mubarak, and S. Al-Omari, J. Magn. Magn. Mater. 382, 211 (2015).CrossRef
6.
Zurück zum Zitat H.M. Huang, Z.Y. Jiang, J.T. Yang, Y.C. Xiong, Z.D. He, Z.W. Zhu, and A. Laref, Chinese J. Phys. 58, 132 (2019).CrossRef H.M. Huang, Z.Y. Jiang, J.T. Yang, Y.C. Xiong, Z.D. He, Z.W. Zhu, and A. Laref, Chinese J. Phys. 58, 132 (2019).CrossRef
7.
8.
Zurück zum Zitat H. Takei, N. Kobayashi, H. Yamauchi, T. Shishido, and T. Fukase, J. Less Common Met. 125, 233 (1986).CrossRef H. Takei, N. Kobayashi, H. Yamauchi, T. Shishido, and T. Fukase, J. Less Common Met. 125, 233 (1986).CrossRef
11.
Zurück zum Zitat C. Dotzler, G.V.M. Williams, and A. Edgar, Curr. Appl. Phys. 8, 447 (2008).CrossRef C. Dotzler, G.V.M. Williams, and A. Edgar, Curr. Appl. Phys. 8, 447 (2008).CrossRef
12.
Zurück zum Zitat T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D.A. Pawlak, K. Shimamuri, and T. Fukuda, Jpn. J. Appl. Phys. 41, 365 (2002).CrossRef T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D.A. Pawlak, K. Shimamuri, and T. Fukuda, Jpn. J. Appl. Phys. 41, 365 (2002).CrossRef
14.
17.
18.
Zurück zum Zitat M. Guennou, P. Bouvier, B. Krikler, J. Kreisel, R. Haumont, and G. Garbarino, Phys. Rev. B 82, 134101 (2010).CrossRef M. Guennou, P. Bouvier, B. Krikler, J. Kreisel, R. Haumont, and G. Garbarino, Phys. Rev. B 82, 134101 (2010).CrossRef
19.
20.
Zurück zum Zitat M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, and J. Kreisel, Phys. Rev. B 94, 214103 (2016).CrossRef M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, and J. Kreisel, Phys. Rev. B 94, 214103 (2016).CrossRef
21.
Zurück zum Zitat S. Vidya, K.C. Mathai, A. John, S. Solomon, K. Joy, and J.K. Thomas, Adv. Mater. Res. 2, 141 (2013).CrossRef S. Vidya, K.C. Mathai, A. John, S. Solomon, K. Joy, and J.K. Thomas, Adv. Mater. Res. 2, 141 (2013).CrossRef
22.
Zurück zum Zitat R. Vilarinho, P. Bouvier, M. Guennou, I. Peral, M.C. Weber, P. Tavares, M. Mihalik Jr., M. Mihalik, G. Garbarino, M. Mezouar, J. Kreisel, A. Almeida, J.A Moreira, Phys. Rev. B 99, 064109 (2019). R. Vilarinho, P. Bouvier, M. Guennou, I. Peral, M.C. Weber, P. Tavares, M. Mihalik Jr., M. Mihalik, G. Garbarino, M. Mezouar, J. Kreisel, A. Almeida, J.A Moreira, Phys. Rev. 99, 064109 (2019).
23.
Zurück zum Zitat Y. Wang, D.J. Weidner, R.C. Liebermann, and Y. Zhao, Phys. Earth Planet. In. 83, 13 (1994).CrossRef Y. Wang, D.J. Weidner, R.C. Liebermann, and Y. Zhao, Phys. Earth Planet. In. 83, 13 (1994).CrossRef
24.
Zurück zum Zitat M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, and R.I. Walton, Phys. Rev. B 85, 054303 (2012).CrossRef M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, and R.I. Walton, Phys. Rev. B 85, 054303 (2012).CrossRef
25.
Zurück zum Zitat P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, Phys. Rev. B 74, 224412 (2006).CrossRef P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, Phys. Rev. B 74, 224412 (2006).CrossRef
26.
Zurück zum Zitat A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, and Y. Benmalem, Solid State Commun. 228, 36 (2016).CrossRef A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, and Y. Benmalem, Solid State Commun. 228, 36 (2016).CrossRef
28.
Zurück zum Zitat A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, Appl. Phys. Lett 81, 1375 (2002).CrossRef A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, Appl. Phys. Lett 81, 1375 (2002).CrossRef
29.
30.
Zurück zum Zitat T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, and V. Vignolia, Sens. Actuators B Chem. 221, 1137 (2015).CrossRef T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, and V. Vignolia, Sens. Actuators B Chem. 221, 1137 (2015).CrossRef
31.
Zurück zum Zitat A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, and T. Wu, J. Phys. Chem. C 118, 28494 (2014).CrossRef A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, and T. Wu, J. Phys. Chem. C 118, 28494 (2014).CrossRef
32.
Zurück zum Zitat Y. Shimizu, D. Koba, H. Saitoh, and S. Takase, ECS Trans. 1, 131 (2006).CrossRef Y. Shimizu, D. Koba, H. Saitoh, and S. Takase, ECS Trans. 1, 131 (2006).CrossRef
33.
Zurück zum Zitat Y. Wang, D.J. Weidner, and F. Guyot, J. Geophys. Res. 101, 661 (1996).CrossRef Y. Wang, D.J. Weidner, and F. Guyot, J. Geophys. Res. 101, 661 (1996).CrossRef
34.
Zurück zum Zitat G. Fiquet, D. Andrault, A. Dewaele, T. Charpin, M. Kunz, and D. Haüsermann, Phys. Earth Planet. In. 105, 21 (1998).CrossRef G. Fiquet, D. Andrault, A. Dewaele, T. Charpin, M. Kunz, and D. Haüsermann, Phys. Earth Planet. In. 105, 21 (1998).CrossRef
35.
Zurück zum Zitat G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, and M. Zahid, Opt. Mater. 33, 553 (2011).CrossRef G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, and M. Zahid, Opt. Mater. 33, 553 (2011).CrossRef
36.
37.
Zurück zum Zitat S.A. Dar, R. Sharma, and A.K. Mishra, J. Mol. Graph. Model. 90, 120 (2019).CrossRef S.A. Dar, R. Sharma, and A.K. Mishra, J. Mol. Graph. Model. 90, 120 (2019).CrossRef
38.
Zurück zum Zitat S.A. Dar, M.A. Ali, and V. Srivastava, Eur. Phys. J. B 93, 102 (2020).CrossRef S.A. Dar, M.A. Ali, and V. Srivastava, Eur. Phys. J. B 93, 102 (2020).CrossRef
39.
Zurück zum Zitat G. Chen, Z. Hu, Y. Zhu, Z.-G. Chen, Y. Zhong, H.-J. Lin, C.-T. Chen, L.H. Tjeng, W. Zhou, and Z. Shao, J. Mater. Chem. A 6, 9854 (2018).CrossRef G. Chen, Z. Hu, Y. Zhu, Z.-G. Chen, Y. Zhong, H.-J. Lin, C.-T. Chen, L.H. Tjeng, W. Zhou, and Z. Shao, J. Mater. Chem. A 6, 9854 (2018).CrossRef
40.
Zurück zum Zitat K.R. Talley, J. Mangum, C.L. Perkins, R. Woods-Robinson, A. Mehta, B.P. Gorman, G.L. Brennecka, and A. Zakutayev, Adv. Electron. Mater. 5, 1900214 (2019).CrossRef K.R. Talley, J. Mangum, C.L. Perkins, R. Woods-Robinson, A. Mehta, B.P. Gorman, G.L. Brennecka, and A. Zakutayev, Adv. Electron. Mater. 5, 1900214 (2019).CrossRef
41.
Zurück zum Zitat K. Ishida, Y. Ikeuchi, C. Tassel, H. Takatsu, C.M. Brown, and H. Kageyama, Inorganics 7, 63 (2019).CrossRef K. Ishida, Y. Ikeuchi, C. Tassel, H. Takatsu, C.M. Brown, and H. Kageyama, Inorganics 7, 63 (2019).CrossRef
42.
Zurück zum Zitat A. Azens, A. Hjelm, D. Le Bellac, C.G. Granqvist, J. Barczynska, and E. Pentjuss, Solid State Ion. 86–88, 943 (1996).CrossRef A. Azens, A. Hjelm, D. Le Bellac, C.G. Granqvist, J. Barczynska, and E. Pentjuss, Solid State Ion. 86–88, 943 (1996).CrossRef
46.
Zurück zum Zitat D.P. Tunstall, and W. Ramage, J. Phys. C: Solid State Phys. 13, 725 (1980).CrossRef D.P. Tunstall, and W. Ramage, J. Phys. C: Solid State Phys. 13, 725 (1980).CrossRef
47.
Zurück zum Zitat W. Ramage, and D.P. Tunstall, J. Phys. C: Solid State Phys. 13, 1623 (1980).CrossRef W. Ramage, and D.P. Tunstall, J. Phys. C: Solid State Phys. 13, 1623 (1980).CrossRef
48.
Zurück zum Zitat Y. Ikeuchi, H. Takatsu, C. Tassel, C.M. Brown, T. Murakami, Y. Matsumoto, Y. Okamoto, and H. Kageyama, Inorg. Chem. 58, 6790 (2019).CrossRef Y. Ikeuchi, H. Takatsu, C. Tassel, C.M. Brown, T. Murakami, Y. Matsumoto, Y. Okamoto, and H. Kageyama, Inorg. Chem. 58, 6790 (2019).CrossRef
49.
50.
Zurück zum Zitat S. Raj, H. Matsui, S. Souma, T. Sato, T. Takahashi, A. Chakraborty, D.D. Sarma, P. Mahadevan, S. Oishi, W.H. McCarroll, and M. Greenblatt, Phys. Rev. B 75, 155116 (2007).CrossRef S. Raj, H. Matsui, S. Souma, T. Sato, T. Takahashi, A. Chakraborty, D.D. Sarma, P. Mahadevan, S. Oishi, W.H. McCarroll, and M. Greenblatt, Phys. Rev. B 75, 155116 (2007).CrossRef
51.
Zurück zum Zitat S. Raj, D. Hashimoto, H. Matsui, S. Souma, T. Sato, T. Takahashi, S. Ray, A. Chakraborty, D.D. Sarma, P. Mahadevan, W.H. McCarroll, and M. Greenblatt, Phys. Rev. B 72, 125125 (2005).CrossRef S. Raj, D. Hashimoto, H. Matsui, S. Souma, T. Sato, T. Takahashi, S. Ray, A. Chakraborty, D.D. Sarma, P. Mahadevan, W.H. McCarroll, and M. Greenblatt, Phys. Rev. B 72, 125125 (2005).CrossRef
52.
Zurück zum Zitat I.C. Lekshmi, A. Gayen, V. Prasad, S.V. Subramanyam, and M.S. Hegde, Mater. Res. Bull. 37, 1815 (2002).CrossRef I.C. Lekshmi, A. Gayen, V. Prasad, S.V. Subramanyam, and M.S. Hegde, Mater. Res. Bull. 37, 1815 (2002).CrossRef
53.
Zurück zum Zitat B. Ingham, S.C. Hendy, S.V. Chong, and J.L. Tallon, Phys. Rev. B 72, 075109 (2005).CrossRef B. Ingham, S.C. Hendy, S.V. Chong, and J.L. Tallon, Phys. Rev. B 72, 075109 (2005).CrossRef
54.
Zurück zum Zitat A. Hjelm, C.G. Granqvist, and J.M. Wills, Phys. Rev. B 54, 2436 (1996).CrossRef A. Hjelm, C.G. Granqvist, and J.M. Wills, Phys. Rev. B 54, 2436 (1996).CrossRef
55.
56.
Zurück zum Zitat A.S. Verma, A. Kumar, and S.R. Bhardwaj, Phys. stat. sol. (b) 245, 1520 (2008).CrossRef A.S. Verma, A. Kumar, and S.R. Bhardwaj, Phys. stat. sol. (b) 245, 1520 (2008).CrossRef
57.
Zurück zum Zitat L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, J. Phys. Chem. Solids 67, 1531 (2006).CrossRef L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, J. Phys. Chem. Solids 67, 1531 (2006).CrossRef
59.
Zurück zum Zitat D. Bocharov, A. Kuzmin, J. Purans, Y. Zhukovskii, Article in Proceedings, Vol 7142, Sixth International Conference on Advanced Optical Materials and Devices (Riga-Latvia) (2008). D. Bocharov, A. Kuzmin, J. Purans, Y. Zhukovskii, Article in Proceedings, Vol 7142, Sixth International Conference on Advanced Optical Materials and Devices (Riga-Latvia) (2008).
60.
Zurück zum Zitat G.A. de Wijs, P.K. de Boer, R.A. de Groot, and G. Kresse, Phys. Rev. B 59, 2684 (1999).CrossRef G.A. de Wijs, P.K. de Boer, R.A. de Groot, and G. Kresse, Phys. Rev. B 59, 2684 (1999).CrossRef
61.
Zurück zum Zitat F. Cora, M.G. Stachiotti, C.R.A. Catlow, and C.O. Rodriguez, J. Phys. Chem. B 101, 3945 (1997).CrossRef F. Cora, M.G. Stachiotti, C.R.A. Catlow, and C.O. Rodriguez, J. Phys. Chem. B 101, 3945 (1997).CrossRef
62.
Zurück zum Zitat R.L. Moreira, and A. Dias, J. Phys. and Chem. of Solids 68, 1617 (2007).CrossRef R.L. Moreira, and A. Dias, J. Phys. and Chem. of Solids 68, 1617 (2007).CrossRef
64.
Zurück zum Zitat G. Kresse, and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994). G. Kresse, and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
66.
67.
68.
69.
70.
72.
73.
Zurück zum Zitat P. S. Nnamchi, C. S. Obayi, Elasticity of Materials‐Basic Principles and Design of Structures, Concept of Phase Transition Based on Elastic Systematics (IntechOpen, 2018). P. S. Nnamchi, C. S. Obayi, Elasticity of Materials‐Basic Principles and Design of Structures, Concept of Phase Transition Based on Elastic Systematics (IntechOpen, 2018).
74.
Zurück zum Zitat Y.X. Zhou, P. Yan, X.Y. Chong, and J. Feng, AIP Adv. 8, 105132 (2018).CrossRef Y.X. Zhou, P. Yan, X.Y. Chong, and J. Feng, AIP Adv. 8, 105132 (2018).CrossRef
75.
Zurück zum Zitat X.P. Gao, Y.H. Jiang, R. Zhou, and J. Feng, J. Alloys Comp. 587, 819 (2014).CrossRef X.P. Gao, Y.H. Jiang, R. Zhou, and J. Feng, J. Alloys Comp. 587, 819 (2014).CrossRef
77.
78.
Zurück zum Zitat M. Born, and K. Huang, Dynamical Theory of Crystal Lattices, 1st ed., (Oxford: Clarendon, 1956), pp. 140–154. M. Born, and K. Huang, Dynamical Theory of Crystal Lattices, 1st ed., (Oxford: Clarendon, 1956), pp. 140–154.
81.
Zurück zum Zitat B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P.C. Schmidt, Intermetallics 11, 23 (2003).CrossRef B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P.C. Schmidt, Intermetallics 11, 23 (2003).CrossRef
84.
Zurück zum Zitat X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, and J. Meng, J. Alloys Compd. 453, 413 (2008).CrossRef X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, and J. Meng, J. Alloys Compd. 453, 413 (2008).CrossRef
86.
87.
Zurück zum Zitat M. H. Ledbetter, Materials at Low Temperatures, (eds) R. P. Reed, A. F. Clark (Metals Park OH: American Society for Metals, 1983) p. 1. M. H. Ledbetter, Materials at Low Temperatures, (eds) R. P. Reed, A. F. Clark (Metals Park OH: American Society for Metals, 1983) p. 1.
88.
Zurück zum Zitat S. Yu, Q. Zeng, A.R. Oganov, G. Frappere, and L. Zhanga, Phys. Chem. Chem. Phys. 17, 11763 (2015).CrossRef S. Yu, Q. Zeng, A.R. Oganov, G. Frappere, and L. Zhanga, Phys. Chem. Chem. Phys. 17, 11763 (2015).CrossRef
89.
Zurück zum Zitat M. Levy, H. Bass, R. Stern, Modern Acoustic Techniques for the Measurement of Mechanical Properties, vol. 39, 1st edn. (Academic Press, 2001), pp. 17-18. M. Levy, H. Bass, R. Stern, Modern Acoustic Techniques for the Measurement of Mechanical Properties, vol. 39, 1st edn. (Academic Press, 2001), pp. 17-18.
90.
Zurück zum Zitat Y.H. Duan, Y. Sun, M.J. Peng, and S.G. Zhou, J. Alloys Compd. 585, 587 (2014).CrossRef Y.H. Duan, Y. Sun, M.J. Peng, and S.G. Zhou, J. Alloys Compd. 585, 587 (2014).CrossRef
91.
Zurück zum Zitat P.K. Panigrahi, Transport Phenomena in Microfluidic Systems (New Jersy: Wiley, 2016), p. 319.CrossRef P.K. Panigrahi, Transport Phenomena in Microfluidic Systems (New Jersy: Wiley, 2016), p. 319.CrossRef
92.
Zurück zum Zitat E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements (New York: McGraw-Hill, 1973). E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements (New York: McGraw-Hill, 1973).
94.
95.
96.
97.
Zurück zum Zitat M.T. Dove, Introduction to Lattice Dynamics, 1st ed., (Cambridge: Cambridge University Press, 1993), pp. 64–65.CrossRef M.T. Dove, Introduction to Lattice Dynamics, 1st ed., (Cambridge: Cambridge University Press, 1993), pp. 64–65.CrossRef
98.
Zurück zum Zitat Y. Aierken, D. Çakır, C. Sevik, and F.M. Peeters, Phys. Rev. B 92, 081408(R) (2015).CrossRef Y. Aierken, D. Çakır, C. Sevik, and F.M. Peeters, Phys. Rev. B 92, 081408(R) (2015).CrossRef
Metadaten
Titel
First-Principles Study on Structural, Electronic, Elastic, Phonon, and Thermodynamic Properties of Tungsten Oxide-Based Perovskite NaWO3
verfasst von
C. Çoban
Publikationsdatum
29.06.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09068-3

Weitere Artikel der Ausgabe 9/2021

Journal of Electronic Materials 9/2021 Zur Ausgabe

Topical Collection: Carbon-Based Materials for Energy Storage

N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction

Neuer Inhalt